2,614 research outputs found

    Solar Neutrinos: Status and Prospects

    Full text link
    We describe the current status of solar neutrino measurements and of the theory -- both neutrino physics and solar astrophysics -- employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the neutrino-electron elastic scattering rate for 8B neutrinos to 3%; the latest SNO global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle theta12; Borexino results for both the 7Be and pep neutrino fluxes, the first direct measurements constraining the rate of ppI and ppII burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on theta13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.Comment: 82 pages, 11 figure

    The Friedmann-Lemaitre-Robertson-Walker Big Bang singularities are well behaved

    Full text link
    We show that the Big Bang singularity of the Friedmann-Lemaitre-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.Comment: 10 pages, 5 figure

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    The Hypothesis of Locality and its Limitations

    Get PDF
    The hypothesis of locality, its origin and consequences are discussed. This supposition is necessary for establishing the local spacetime frame of accelerated observers; in this connection, the measurement of length in a rotating system is considered in detail. Various limitations of the hypothesis of locality are examined.Comment: LaTeX file, no figures, 14 pages, to appear in: "Relativity in Rotating Frames", edited by G. Rizzi and M.L. Ruggiero (Kluwer Academic Publishers, Dordrecht, 2003

    The Uncertainty Principle in the Presence of Quantum Memory

    Full text link
    The uncertainty principle, originally formulated by Heisenberg, dramatically illustrates the difference between classical and quantum mechanics. The principle bounds the uncertainties about the outcomes of two incompatible measurements, such as position and momentum, on a particle. It implies that one cannot predict the outcomes for both possible choices of measurement to arbitrary precision, even if information about the preparation of the particle is available in a classical memory. However, if the particle is prepared entangled with a quantum memory, a device which is likely to soon be available, it is possible to predict the outcomes for both measurement choices precisely. In this work we strengthen the uncertainty principle to incorporate this case, providing a lower bound on the uncertainties which depends on the amount of entanglement between the particle and the quantum memory. We detail the application of our result to witnessing entanglement and to quantum key distribution.Comment: 5 pages plus 12 of supplementary information. Updated to match the journal versio

    Scaling Separability Criterion: Application To Gaussian States

    Full text link
    We introduce examples of three- and four-mode entangled Gaussian mixed states that are not detected by the scaling and Peres-Horodecki separability criteria. The presented modification of the scaling criterion resolves this problem. Also it is shown that the new criterion reproduces the main features of the scaling pictures for different cases of entangled states, while the previous versions lead to completely different outcomes. This property of the presented scheme is evidence of its higher generality.Comment: 7 pages, 4 figure

    Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit

    Get PDF
    We will investigate the influence of the inhomogeneity of the universe, especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a gravitationally bound local system such as the solar system. We concentrate on the dynamical perturbation to the planetary motion and derive the leading order effect generated from the LTB model. It will be shown that there appear not only a well-known cosmological effect arisen from the homogeneous and isotropic model, such as the Robertson-Walker (RW) model, but also the additional terms due to the radial inhomogeneity of the LTB model. We will also apply the obtained results to the problem of secular increase in the astronomical unit, reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of the universe cannot have a significant effect for explaining the observed dAU/dt=15±4 [m/century]d{\rm AU}/dt = 15 \pm 4 ~{\rm [m/century]}.Comment: 12 pages, no figure, accepted for publication in Journal of Astrophysics and Astronom

    On defining the Hamiltonian beyond quantum theory

    Full text link
    Energy is a crucial concept within classical and quantum physics. An essential tool to quantify energy is the Hamiltonian. Here, we consider how to define a Hamiltonian in general probabilistic theories, a framework in which quantum theory is a special case. We list desiderata which the definition should meet. For 3-dimensional systems, we provide a fully-defined recipe which satisfies these desiderata. We discuss the higher dimensional case where some freedom of choice is left remaining. We apply the definition to example toy theories, and discuss how the quantum notion of time evolution as a phase between energy eigenstates generalises to other theories.Comment: Authors' accepted manuscript for inclusion in the Foundations of Physics topical collection on Foundational Aspects of Quantum Informatio

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore