290 research outputs found
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Local biases drive, but do not determine, the perception of illusory trajectories
When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
Local biases drive, but do not determine, the perception of illusory trajectories
When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception
Critical solutions in topologically gauged N=8 CFTs in three dimensions
In this paper we discuss some special (critical) background solutions that
arise in topological gauged three-dimensional CFTs with SO(N)
gauge group. These solutions solve the TMG equations (containing the parameters
and ) for a certain set of values of obtained by varying the
number of scalar fields with a VEV. Apart from Minkowski, chiral round
and null-warped (or Schr\"odinger(z=2)) we identify also a more exotic
solution recently found in by Ertl, Grumiller and Johansson. We also
discuss the spectrum, symmetry breaking pattern and the supermultiplet
structure in the various backgrounds and argue that some properties are due to
their common origin in a conformal phase. Some of the scalar fields, including
all higgsed ones, turn out to satisfy three-dimensional singleton field
equations. Finally, we note that topologically gauged ABJ(M)
theories have a similar, but more restricted, set of background solutions.Comment: 34 pages, v2: minor corrections, note about a new solution added in
final section, v3: two footnotes adde
Haptic Edge Detection Through Shear
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals
A novel role for microglia in minimizing excitotoxicity
Microglia are the abundant, resident myeloid cells of the central nervous system (CNS) that become rapidly activated in response to injury or inflammation. While most studies of microglia focus on this phenomenon, little is known about the function of 'resting' microglia, which possess fine, branching cellular processes. Biber and colleagues, in a recent paper in Journal of Neuroinflammation, report that ramified microglia can limit excitotoxicity, an important insight for understanding mechanisms that limit neuron death in CNS disease
- …
