432 research outputs found
Main flexible pavement and mix design methods in Europe and challenges for the development of an european method
Pavement and mix design represent one of the key components within the life cycle of a road infrastructure, with links to political, economic, technical, societal and environmental issues. Recent researches related to the characteristics of materials and associated behavior models both for materials and pavement, made it appropriate to consider updating current pavement design methods, and especially in the USA this has already been in process while in Europe uses of the methods developed in the early 1970s. Thus, this paper firstly presents a brief historical overview of pavement design methods, highlighting early limitations of old empirical methods. Afterwards, French, UK and Shell methods currently in use in Europe will be presented, underlining their main components in terms of methodology, traffic, climatic conditions and subgrade. The asphalt mix design and modeling in Europe are presented with their inclusion in the pavement design methods. Finally, the main challenges for the development of a European pavement design method are presented as well as the recent research developments that can be used for that methodThe second author would like to express the support of Portuguese
National Funding Agency for Science, Research and
Technology (FCT) through scholarship SFRH/BSAB/114415/
2016. This research did not receive any specific grant from
funding agencies in the public, commercial, or not-for-profit
sectors.info:eu-repo/semantics/publishedVersio
Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins
Thermal tomography utilizing truncated Fourier series approximation of the heat diffusion equation
In a thermal tomography measurement setup, a physical body is sequentially heated at different source locations and temperature evolutions are measured at several measurement locations on the surface of the body. Based on these transient measurements, the thermal conductivity, the volumetric heat capacity and the surface heat transfer coefficient of the body are estimated as spatially distributed parameters, typically by minimizing a modified data misfit functional between the measured data and the data computed with the estimated thermal parameters. In thermal tomography, heat transfer is modeled with the time-dependent heat diffusion equation for which direct time domain solving is computationally expensive. In this paper, the computations of thermal tomography are sped up by utilizing a truncated Fourier series approximation approach. In this approach, a frequency domain equivalent of the time domain heat diffusion equation is solved at multiple frequencies and the solutions are used to obtain a truncated Fourier series approximation for the solution and the Jacobian of the time domain heat transfer problem. The feasibility of the approximation is tested with simulated and experimental measurement data. When compared to a previously used time domain approach, it is shown to lead to a significant reduction of computation time in image reconstruction with no significant loss of reconstruction accuracy
Hybrid Approach in Microscale Transport Phenomena: Application to Biodiesel Synthesis in Micro-reactors
A hybrid engineering approach to the study of transport phenomena, based on the
synergy among computational, analytical, and experimental methodologies is
reviewed. The focus of the chapter is on fundamental analysis and proof of concept
developments in the use of nano- and micro-technologies for energy efficiency and
heat and mass transfer enhancement applications. The hybrid approach described
herein combines improved lumped-differential modeling, hybrid numericalanalytical solution methods, mixed symbolic-numerical computations, and
advanced experimental techniques for micro-scale transport phenomena. An
application dealing with micro-reactors for continuous synthesis of biodiesel is
selected to demonstrate the instrumental role of the hybrid approach in achieving
improved design and enhanced performance
- …
