18 research outputs found

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Analysis of techni-dilaton as a dark matter candidate

    Full text link
    The almost conformal dynamics of walking technicolor (TC) implies the existence of the approximate scale invariance, which breaks down spontaneously by the condensation of anti-techni and techni-fermions. According to the Goldstone theorem, a spinless, parity-even particle, called techni-dilaton (TD), then emerges at low energy. If TC exhibits an extreme walking, TD mass is parametrically much smaller than that of techni-fermions (around 1 TeV), while its decay constant is comparable to the cutoff scale of walking TC. We analyze the light, decoupled TD as a dark matter candidate and study cosmological productions of TD, both thermal and non-thermal, in the early Universe. The thermal population is governed dominantly by single TD production processes involving vertices breaking the scale symmetry, while the non-thermal population is by the vacuum misalignment and is accumulated via harmonic and coherent oscillations of misaligned classical TD fields. The non-thermal population turns out to be dominant and large enough to explain the abundance of presently observed dark matter, while the thermal population is highly suppressed due to the large TD decay constant. Several cosmological and astrophysical limits on the light, decoupled TD are examined to find that the TD mass is constrained to be in a range between 0.01 eV and 500 eV. From the combined constraints on cosmological productions and astrophysical observations, we find that the light, decoupled TD can be a good dark matter candidate with the mass around a few hundreds of eV for typical models of (extreme) walking TC. We finally mention possible designated experiments to detect the TD dark matter.Comment: 26 pages. 16 figures; v2, expanded Section 2.4 on composite Higgs in light of newly discovered Higgs-like particle at LH

    O(αsv2)O(\alpha_s v^2) correction to pseudoscalar quarkonium decay to two photons

    Full text link
    We investigate the O(αsv2)O(\alpha_s v^2) correction to the process of pseudoscalar quarkonium decay to two photons in nonrelativistic QCD (NRQCD) factorization framework. The short-distance coefficient associated with the relative-order v2v^2 NRQCD matrix element is determined to next-to-leading order in αs\alpha_s through the perturbative matching procedure. Some technical subtleties encountered in calculating the {O(\alpha_s) QCD amplitude are thoroughly addressed.Comment: v2, 28 pages, 2 figures and 2 tables, matching the published version; typos corrected, references added, as well as a "Note added in the proof

    Quantum Spacetime Phenomenology

    Get PDF
    I review the current status of phenomenological programs inspired by quantum-spacetime research. I stress in particular the significance of results establishing that certain data analyses provide sensitivity to effects introduced genuinely at the Planck scale. And my main focus is on phenomenological programs that managed to affect the directions taken by studies of quantum-spacetime theories.Comment: 125 pages, LaTex. This V2 is updated and more detailed than the V1, particularly for quantum-spacetime phenomenology. The main text of this V2 is about 25% more than the main text of the V1. Reference list roughly double
    corecore