224 research outputs found

    A framework to capture and share knowledge using storytelling and video sharing in global product development

    Get PDF
    In global engineering enterprises, information and knowledge sharing are critical factors that can determine a project's success. This statement is widely acknowledged in published literature. However, according to some academics, tacit knowledge is derived from a person’s lifetime of experience, practice, perception and learning, which makes it hard to capture and document in order to be shared. This project investigates if social media tools can be used to improve and enable tacit knowledge sharing within a global engineering enterprise. This paper first provides a brief background of the subject area, followed by an explanation of the industrial investigation, from which the proposed knowledge framework to improve tacit knowledge sharing is presented. This project’s main focus is on the improvement of collaboration and knowledge sharing amongst product development engineers in order to improve the whole product development cycle

    Analogue Mean Systemic Filling Pressure: a New Volume Management Approach During Percutaneous Left Ventricular Assist Device Therapy

    Full text link
    The absence of an accepted gold standard to estimate volume status is an obstacle for optimal management of left ventricular assist devices (LVADs). The applicability of the analogue mean systemic filling pressure (Pmsa) as a surrogate of the mean circulatory pressure to estimate volume status for patients with LVADs has not been investigated. Variability of flows generated by the Impella CP, a temporary LVAD, should have no physiological impact on fluid status. This translational interventional ovine study demonstrated that Pmsa did not change with variable circulatory flows induced by a continuous flow LVAD (the average dynamic increase in Pmsa of 0.20 ± 0.95 mmHg from zero to maximal Impella flow was not significant (p = 0.68)), confirming applicability of the human Pmsa equation for an ovine LVAD model. The study opens new directions for future translational and human investigations of fluid management using Pmsa for patients with temporary LVADs

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Prostate cancer cell malignancy via modulation of HIF-1 alpha pathway with isoflurane and propofol alone and in combination

    Get PDF
    BACKGROUND: Surgery is considered to be the first line treatment for solid tumours. Recently, retrospective studies reported that general anaesthesia was associated with worse long-term cancer-free survival when compared with regional anaesthesia. This has important clinical implications; however, the mechanisms underlying those observations remain unclear. We aim to investigate the effect of anaesthetics isoflurane and propofol on prostate cancer malignancy. METHODS: Prostate cancer (PC3) cell line was exposed to commonly used anaesthetic isoflurane and propofol. Malignant potential was assessed through evaluation of expression level of hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, cell proliferation and migration as well as development of chemoresistance. RESULTS: We demonstrated that isoflurane, at a clinically relevant concentration induced upregulation of HIF-1α and its downstream effectors in PC3 cell line. Consequently, cancer cell characteristics associated with malignancy were enhanced, with an increase of proliferation and migration, as well as development of chemoresistance. Inhibition of HIF-1α neosynthesis through upper pathway blocking by a PI-3K-Akt inhibitor or HIF-1α siRNA abolished isoflurane-induced effects. In contrast, the intravenous anaesthetic propofol inhibited HIF-1α activation induced by hypoxia or CoCl(2). Propofol also prevented isoflurane-induced HIF-1α activation, and partially reduced cancer cell malignant activities. CONCLUSIONS: Our findings suggest that modulation of HIF-1α activity by anaesthetics may affect cancer recurrence following surgery. If our data were to be extrapolated to the clinical setting, isoflurane but not propofol should be avoided for use in cancer surgery. Further work involving in vivo models and clinical trials is urgently needed to determine the optimal anaesthetic regimen for cancer patients

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Different SO(10) Paths to Fermion Masses and Mixings

    Get PDF
    Recently SO(10) models with type-II see-saw dominance have been proposed as a promising framework for obtaining Grand Unification theories with approximate Tri-bimaximal (TB) mixing in the neutrino sector. We make a general study of SO(10) models with type-II see-saw dominance and show that an excellent fit can be obtained for fermion masses and mixings, also including the neutrino sector. To make this statement more significant we compare the performance of type-II see-saw dominance models in fitting the fermion masses and mixings with more conventional models which have no built-in TB mixing in the neutrino sector. For a fair comparison the same input data and fitting procedure is adopted for all different theories. We find that the type-II dominance models lead to an excellent fit, comparable with the best among the available models, but the tight structure of this framework implies a significantly larger amount of fine tuning with respect to other approaches.Comment: 24 pages, References and minor wording changes adde

    Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    Get PDF
    BACKGROUND: Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. RESULTS: We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm(-2), high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. CONCLUSION: Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns

    Cell Origin of Human Mesenchymal Stem Cells Determines a Different Healing Performance in Cardiac Regeneration

    Get PDF
    The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC) derived from umbilical cord blood (CB), adipose tissue (AT) or bone marrow (BM) for the treatment of myocardial infarction (MI) remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal) intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105+-CB treated groups compared to CB and nontreated MI group (MI-C). Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function

    Microarray-Based Transcriptomic Analysis of Differences between Long-Term Gregarious and Solitarious Desert Locusts

    Get PDF
    Desert locusts (Schistocerca gregaria) show an extreme form of phenotypic plasticity and can transform between a cryptic solitarious phase and a swarming gregarious phase. The two phases differ extensively in behavior, morphology and physiology but very little is known about the molecular basis of these differences. We used our recently generated Expressed Sequence Tag (EST) database derived from S. gregaria central nervous system (CNS) to design oligonucleotide microarrays and compare the expression of thousands of genes in the CNS of long-term gregarious and solitarious adult desert locusts. This identified 214 differentially expressed genes, of which 40% have been annotated to date. These include genes encoding proteins that are associated with CNS development and modeling, sensory perception, stress response and resistance, and fundamental cellular processes. Our microarray analysis has identified genes whose altered expression may enable locusts of either phase to deal with the different challenges they face. Genes for heat shock proteins and proteins which confer protection from infection were upregulated in gregarious locusts, which may allow them to respond to acute physiological challenges. By contrast the longer-lived solitarious locusts appear to be more strongly protected from the slowly accumulating effects of ageing by an upregulation of genes related to anti-oxidant systems, detoxification and anabolic renewal. Gregarious locusts also had a greater abundance of transcripts for proteins involved in sensory processing and in nervous system development and plasticity. Gregarious locusts live in a more complex sensory environment than solitarious locusts and may require a greater turnover of proteins involved in sensory transduction, and possibly greater neuronal plasticity
    corecore