150 research outputs found
Motion and position shifts induced by the double-drift stimulus are unaffected by attentional load.
The double-drift stimulus produces a strong shift in apparent motion direction that generates large errors of perceived position. In this study, we tested the effect of attentional load on the perceptual estimates of motion direction and position for double-drift stimuli. In each trial, four objects appeared, one in each quadrant of a large screen, and they moved upward or downward on an angled trajectory. The target object whose direction or position was to be judged was either cued with a small arrow prior to object motion (low attentional load condition) or cued after the objects stopped moving and disappeared (high attentional load condition). In Experiment 1, these objects appeared 10° from the central fixation, and participants reported the perceived direction of the target's trajectory after the stimulus disappeared by adjusting the direction of an arrow at the center of the response screen. In Experiment 2, the four double-drift objects could appear between 6 ° and 14° from the central fixation, and participants reported the location of the target object after its disappearance by moving the position of a small circle on the response screen. The errors in direction and position judgments showed little effect of the attentional manipulation-similar errors were seen in both experiments whether or not the participant knew which double-drift object would be tested. This suggests that orienting endogenous attention (i.e., by only attending to one object in the precued trials) does not interact with the strength of the motion or position shifts for the double-drift stimulus
Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage
© 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes
Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain
Background. The cellular basis of long term radiation damage in the brain is not fully understood. Methods and Findings. We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months. Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with preserved capillaries. Conclusions. This study demonstrates that long term radiation injury is associated with irreversible damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursor
Assigning Backbone NMR Resonances for Full Length Tau Isoforms: Efficient Compromise between Manual Assignments and Reduced Dimensionality
Tau protein is the longest disordered protein for which nearly complete backbone NMR resonance assignments have been reported. Full-length tau protein was initially assigned using a laborious combination of bootstrapping assignments from shorter tau fragments and conventional triple resonance NMR experiments. Subsequently it was reported that assignments of comparable quality could be obtained in a fully automated fashion from data obtained using reduced dimensionality NMR (RDNMR) experiments employing a large number of indirect dimensions. Although the latter strategy offers many advantages, it presents some difficulties if manual intervention, confirmation, or correction of the assignments is desirable, as may often be the case for long disordered and degenerate polypeptide sequences. Here we demonstrate that nearly complete backbone resonance assignments for full-length tau isoforms can be obtained without resorting either to bootstrapping from smaller fragments or to very high dimensionality experiments and automation. Instead, a set of RDNMR triple resonance experiments of modest dimensionality lend themselves readily to efficient and unambiguous manual assignments. An analysis of the backbone chemical shifts obtained in this fashion indicates several regions in full length tau with a notable propensity for helical or strand-like structure that are in good agreement with previous observations
Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition
The structure of vertically aligned carbon nanotubes (CNTs) severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD) was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future
Primed T Cell Responses to Chemokines Are Regulated by the Immunoglobulin-Like Molecule CD31
CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity
The M/GP5 Glycoprotein Complex of Porcine Reproductive and Respiratory Syndrome Virus Binds the Sialoadhesin Receptor in a Sialic Acid-Dependent Manner
The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP3, GP4 and GP5 envelope glycoproteins, only the M/GP5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP5. These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines
Flow-to-fracture transition and pattern formation in a discontinuous shear thickening fluid
Recent theoretical and experimental work suggests a frictionless-frictional transition with increasing inter-particle pressure explains the extreme solid-like response of discontinuous shear thickening suspensions. However, analysis of macroscopic discontinuous shear thickening flow in geometries other than the standard rheometry tools remain scarce. Here we use a Hele-Shaw cell geometry to visualise gas-driven invasion patterns in discontinuous shear thickening cornstarch suspensions. We plot quantitative results from pattern analysis in a volume fraction-pressure phase diagram and explain them in context of rheological measurements. We observe three distinct pattern morphologies: viscous fingering, dendritic fracturing, and system-wide fracturing, which correspond to the same packing fraction ranges as weak shear thickening, discontinuous shear thickening, and shear-jammed regimes
Emergence of Fatal PRRSV Variants: Unparalleled Outbreaks of Atypical PRRS in China and Molecular Dissection of the Unique Hallmark
Porcine reproductive and respiratory syndrome (PRRS) is a severe viral disease in pigs, causing great economic losses worldwide each year. The causative agent of the disease, PRRS virus (PRRSV), is a member of the family Arteriviridae. Here we report our investigation of the unparalleled large-scale outbreaks of an originally unknown, but so-called “high fever” disease in China in 2006 with the essence of PRRS, which spread to more than 10 provinces (autonomous cities or regions) and affected over 2,000,000 pigs with about 400,000 fatal cases. Different from the typical PRRS, numerous adult sows were also infected by the “high fever” disease. This atypical PRRS pandemic was initially identified as a hog cholera-like disease manifesting neurological symptoms (e.g., shivering), high fever (40–42°C), erythematous blanching rash, etc. Autopsies combined with immunological analyses clearly showed that multiple organs were infected by highly pathogenic PRRSVs with severe pathological changes observed. Whole-genome analysis of the isolated viruses revealed that these PRRSV isolates are grouped into Type II and are highly homologous to HB-1, a Chinese strain of PRRSV (96.5% nucleotide identity). More importantly, we observed a unique molecular hallmark in these viral isolates, namely a discontinuous deletion of 30 amino acids in nonstructural protein 2 (NSP2). Taken together, this is the first comprehensive report documenting the 2006 epidemic of atypical PRRS outbreak in China and identifying the 30 amino-acid deletion in NSP2, a novel determining factor for virulence which may be implicated in the high pathogenicity of PRRSV, and will stimulate further study by using the infectious cDNA clone technique
On the origin of glioma
Glioma is the most frequent primary brain tumor of adults that has a presumably glial origin. Although our knowledge regarding molecular mechanisms and signaling pathways involved in gliomagenesis has increased immensely during the past decade, high-grade glioma remains a lethal disease with dismal prognosis. The failure of current therapies has to a large extent been ascribed the functional heterogeneity of glioma cells. One reason for this heterogeneity is most certainly the large number of variations in genetic alterations that can be found in high-grade gliomas. Another factor that may influence glioma heterogeneity could be the cell type from which the glioma is initiated. The cell of origin for glioma is still undefined, and additional knowledge about this issue may prove critical for a more complete understanding of glioma biology. Based on information from patients, developmental biology, and experimental glioma models, the most putative target cells include astrocytes, neural stem cells, and oligodendrocyte precursor cells, which are all discussed in more detail in this article. Animal modeling of glioma suggests that these three cell types have the capability to be the origin of glioma, and we have reason to believe that, depending on the initiating cell type, prognosis and response to therapy may be significantly different. Thus, it is essential to explore further the role of cellular origin in glioma
- …
