1,715 research outputs found
New generalized nonspherical black hole solutions
We present numerical evidence for the existence of several types of static
black hole solutions with a nonspherical event horizon topology in
spacetime dimensions. These asymptotically flat configurations are found for a
specific metric ansatz and can be viewed as higher dimensional counterparts of
the static black rings, dirings and black Saturn. Similar to that case,
they are supported against collapse by conical singularities. The issue of
rotating generalizations of these solutions is also considered.Comment: 47 pages, 11 figures, some comments adde
Partonic description of a supersymmetric p-brane
We consider supersymmetric extensions of a recently proposed partonic
description of a bosonic p-brane which reformulates the Nambu-Goto action as an
interacting multi-particle action with Filippov-Lie algebra gauge symmetry. We
construct a worldline supersymmetric action by postulating, among others, a
p-form fermion. Demanding a local worldline supersymmetry rather than the full
worldvolume supersymmetry, we circumvent a known no-go theorem against the
construction of a Ramond-Neveu-Schwarz supersymmetric action for a p-brane of
p>1. We also derive a spacetime supersymmetric Green-Schwarz extension from the
preexisting kappa-symmetric action.Comment: 1+16 pages, no figure; References added and Concluding section
expanded. Final version to appear in JHE
Ultraspinning instability: the missing link
We study linearized perturbations of Myers-Perry black holes in d=7, with two
of the three angular momenta set to be equal, and show that instabilities
always appear before extremality. Analogous results are expected for all higher
odd d. We determine numerically the stationary perturbations that mark the
onset of instability for the modes that preserve the isometries of the
background. The onset is continuously connected between the previously studied
sectors of solutions with a single angular momentum and solutions with all
angular momenta equal. This shows that the near-extremality instabilities are
of the same nature as the ultraspinning instability of d>5 singly-spinning
solutions, for which the angular momentum is unbounded. Our results raise the
question of whether there are any extremal Myers-Perry black holes which are
stable in d>5.Comment: 19 pages. 1 figur
Thermodynamic instability of doubly spinning black objects
We investigate the thermodynamic stability of neutral black objects with (at
least) two angular momenta. We use the quasilocal formalism to compute the
grand canonical potential and show that the doubly spinning black ring is
thermodynamically unstable. We consider the thermodynamic instabilities of
ultra-spinning black objects and point out a subtle relation between the
microcanonical and grand canonical ensembles. We also find the location of the
black string/membrane phases of doubly spinning black objects.Comment: 25 pages, 7 figures v2: matches the published versio
Rotating black rings on Taub-NUT
In this paper, we construct new solutions describing rotating black rings on
Taub-NUT using the inverse-scattering method. These are five-dimensional vacuum
space-times, generalising the Emparan-Reall and extremal Pomeransky-Sen'kov
black rings to a Taub-NUT background space. When reduced to four dimensions in
Kaluza-Klein theory, these solutions describe (possibly rotating) electrically
charged black holes in superposition with a finitely separated magnetic
monopole. Various properties of these solutions are studied, from both a five-
and four-dimensional perspective.Comment: 33 pages, 3 figures, LaTe
Hawking emission from quantum gravity black holes
We address the issue of modelling quantum gravity effects in the evaporation
of higher dimensional black holes in order to go beyond the usual
semi-classical approximation. After reviewing the existing six families of
quantum gravity corrected black hole geometries, we focus our work on
non-commutative geometry inspired black holes, which encode model independent
characteristics, are unaffected by the quantum back reaction and have an
analytical form compact enough for numerical simulations. We consider the
higher dimensional, spherically symmetric case and we proceed with a complete
analysis of the brane/bulk emission for scalar fields. The key feature which
makes the evaporation of non-commutative black holes so peculiar is the
possibility of having a maximum temperature. Contrary to what happens with
classical Schwarzschild black holes, the emission is dominated by low frequency
field modes on the brane. This is a distinctive and potentially testable
signature which might disclose further features about the nature of quantum
gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections,
version matching that published on JHE
A framework to capture and share knowledge using storytelling and video sharing in global product development
In global engineering enterprises, information and knowledge sharing are critical factors that can determine a project's success. This statement is widely acknowledged in published literature. However, according to some academics, tacit knowledge is derived from a person’s lifetime of experience, practice, perception and learning, which makes it hard to capture and document in order to be shared. This project investigates if social media tools can be used to improve and enable tacit knowledge sharing within a global engineering enterprise. This paper first provides a brief background of the subject area, followed by an explanation of the industrial investigation, from which the proposed knowledge framework to improve tacit knowledge sharing is presented. This project’s main focus is on the improvement of collaboration and knowledge sharing amongst product development engineers in order to improve the whole product development cycle
Ultraspinning instability of anti-de Sitter black holes
Myers-Perry black holes with a single spin in d>5 have been shown to be
unstable if rotating sufficiently rapidly. We extend the numerical analysis
which allowed for that result to the asymptotically AdS case. We determine
numerically the stationary perturbations that mark the onset of the
instabilities for the modes that preserve the rotational symmetries of the
background. The parameter space of solutions is thoroughly analysed, and the
onset of the instabilities is obtained as a function of the cosmological
constant. Each of these perturbations has been conjectured to represent a
bifurcation point to a new phase of stationary AdS black holes, and this is
consistent with our results.Comment: 22 pages, 7 figures. v2: Reference added. Matches published versio
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
