44 research outputs found
Dynamical Dark Energy model parameters with or without massive neutrinos
We use WMAP5 and other cosmological data to constrain model parameters in
quintessence cosmologies, focusing also on their shift when we allow for
non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are
used here, as examples of slowly or fastly varying state parameter w(a). Both
potentials depend on an energy scale \Lambda. Here we confirm the results of
previous analysis with WMAP3 data on the upper limits on \Lambda, which turn
out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for
SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of
neutrino mass as a free parameter. On the contrary, when the neutrino mass
degree of freedom is opened, significant shifts in the best-fit values of other
parameters occur.Comment: 9 pages, 3 figures, submitted to JCA
Constraining the time variation of the coupling constants from cosmic microwave background: effect of \Lambda_{QCD}
We investigate constraints on the time variation of the fine structure
constant between the recombination epoch and the present epoch,
\Delta\alpha/\alpha \equiv (\alpha_{rec} - \alpha_{now})/\alpha_{now}, from
cosmic microwave background (CMB) taking into account simultaneous variation of
other physical constants, namely the electron mass m_{e} and the proton mass
m_{p}. In other words, we consider the variation of Yukawa coupling and the QCD
scale \Lambda_{QCD} in addition to the electromagnetic coupling. We clarify
which parameters can be determined from CMB temperature anisotropy in terms of
singular value decomposition. Assuming a relation among variations of coupling
constants governed by a single scalar field (the dilaton), the 95% confidence
level (C.L.) constraint on \Delta\alpha/\alpha is found to be -8.28 \times
10^{-3} < \Delta\alpha/\alpha < 1.81 \times 10^{-3}, which is tighter than the
one obtained by considering only the change of \alpha and m_{e}. We also obtain
the constraint on the time variation of the proton-to-electron mass ratio \mu
\equiv m_{p}/m_{e} to be -0.52 < \Delta\mu/\mu < 0.17 (95% C.L.) under the same
assumption. Finally, we also implement a forecast for constraints from the
PLANCK survey.Comment: 25 pages, 4 figures; references adde
Investigating dark energy experiments with principal components
We use a principal component approach to contrast different kinds of probes
of dark energy, and to emphasize how an array of probes can work together to
constrain an arbitrary equation of state history w(z). We pay particular
attention to the role of the priors in assessing the information content of
experiments and propose using an explicit prior on the degree of smoothness of
w(z) that is independent of the binning scheme. We also show how a figure of
merit based on the mean squared error probes the number of new modes
constrained by a data set, and use it to examine how informative various
experiments will be in constraining the evolution of dark energy.Comment: A significantly expanded version with an added PCA for weak lensing,
a new detailed discussion of the correlation prior proposed in this work, and
a new discussion outlining the differences between the Bayesian and the
frequentist approaches to reconstructing w(z). Matches the version accepted
to JCAP. 8 pages, 2 figure
The High Redshift Integrated Sachs-Wolfe Effect
In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky
Survey Data Release Six (SDSS DR6) of about one million photometrically
selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high
redshift, aiming at constraining the behavior of the expansion rate and thus
the behaviour of dark energy at those epochs. This unique sample significantly
extends previous catalogs to higher redshifts while retaining high efficiency
in the selection algorithm. We compute the auto-correlation function (ACF) of
QSO number density from which we extract the bias and the stellar
contamination. We then calculate the cross-correlation function (CCF) between
QSO number density and Cosmic Microwave Background (CMB) temperature
fluctuations in different subsamples: at high z>1.5 and low z<1.5 redshifts and
for two different choices of QSO in a conservative and in a more speculative
analysis. We find an overall evidence for a cross-correlation different from
zero at the 2.7\sigma level, while this evidence drops to 1.5\sigma at z>1.5.
We focus on the capabilities of the ISW to constrain the behaviour of the dark
energy component at high redshift both in the \LambdaCDM and Early Dark Energy
cosmologies, when the dark energy is substantially unconstrained by
observations. At present, the inclusion of the ISW data results in a poor
improvement compared to the obtained constraints from other cosmological
datasets. We study the capabilities of future high-redshift QSO survey and find
that the ISW signal can improve the constraints on the most important
cosmological parameters derived from Planck CMB data, including the high
redshift dark energy abundance, by a factor \sim 1.5.Comment: 20 pages, 18 figures, and 7 table
Early Dark Energy at High Redshifts: Status and Perspectives
Early dark energy models, for which the contribution to the dark energy
density at high redshifts is not negligible, influence the growth of cosmic
structures and could leave observable signatures that are different from the
standard cosmological constant cold dark matter (CDM) model. In this
paper, we present updated constraints on early dark energy using geometrical
and dynamical probes. From WMAP five-year data, baryon acoustic oscillations
and type Ia supernovae luminosity distances, we obtain an upper limit of the
dark energy density at the last scattering surface (lss), (95% C.L.). When we include higher redshift
observational probes, such as measurements of the linear growth factors,
Gamma-Ray Bursts (GRBs) and Lyman- forest (\lya), this limit improves
significantly and becomes (95%
C.L.). Furthermore, we find that future measurements, based on the
Alcock-Paczy\'nski test using the 21cm neutral hydrogen line, on GRBs and on
the \lya forest, could constrain the behavior of the dark energy component and
distinguish at a high confidence level between early dark energy models and
pure CDM. In this case, the constraints on the amount of early dark
energy at the last scattering surface improve by a factor ten, when compared to
present constraints. We also discuss the impact on the parameter , the
growth rate index, which describes the growth of structures in standard and in
modified gravity models.Comment: 11 pages, 9 figures and 4 table
Reconstruction of the Primordial Power Spectrum by Direct Inversion
We introduce a new method for reconstructing the primordial power spectrum,
, directly from observations of the Cosmic Microwave Background (CMB). We
employ Singular Value Decomposition (SVD) to invert the radiation perturbation
transfer function. The degeneracy of the multipole to wavenumber
linear mapping is thus reduced. This enables the inversion to be carried out at
each point along a Monte Carlo Markov Chain (MCMC) exploration of the combined
and cosmological parameter space. We present best--fit obtained
with this method along with other cosmological parameters.Comment: 23 pages, 9 figure
Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe?
We test a cosmological model which the only component is a pressureless fluid
with a constant bulk viscosity as an explanation for the present accelerated
expansion of the universe. We classify all the possible scenarios for the
universe predicted by the model according to their past, present and future
evolution and we test its viability performing a Bayesian statistical analysis
using the SCP ``Union'' data set (307 SNe Ia), imposing the second law of
thermodynamics on the dimensionless constant bulk viscous coefficient \zeta and
comparing the predicted age of the universe by the model with the constraints
coming from the oldest globular clusters.
The best estimated values found for \zeta and the Hubble constant Ho are:
\zeta=1.922 \pm 0.089 and Ho=69.62 \pm 0.59 km/s/Mpc with a \chi^2=314. The age
of the universe is found to be 14.95 \pm 0.42 Gyr. We see that the estimated
value of Ho as well as of \chi^2 are very similar to those obtained from LCDM
model using the same SNe Ia data set. The estimated age of the universe is in
agreement with the constraints coming from the oldest globular clusters.
Moreover, the estimated value of \zeta is positive in agreement with the second
law of thermodynamics (SLT).
On the other hand, we perform different forms of marginalization over the
parameter Ho in order to study the sensibility of the results to the way how Ho
is marginalized. We found that it is almost negligible the dependence between
the best estimated values of the free parameters of this model and the way how
Ho is marginalized in the present work. Therefore, this simple model might be a
viable candidate to explain the present acceleration in the expansion of the
universe.Comment: 31 pages, 12 figures and 2 tables. Accepted to be published in the
Journal of Cosmology and Astroparticle Physics. Analysis using the new SCP
"Union" SNe Ia dataset instead of the Gold 2006 and ESSENCE datasets and
without changes in the conclusions. Added references. Related works:
arXiv:0801.1686 and arXiv:0810.030
A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints
We compare higher order gravity models to observational constraints from
magnitude-redshift supernova data, distance to the last scattering surface of
the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed
systematic approach to higher order gravity models based on minimal sets of
curvature invariants, and select models that pass some physical acceptability
conditions (free of ghost instabilities, real and positive propagation speeds,
and free of separatrices). Models that satisfy these physical and observational
constraints are found in this analysis and do provide fits to the data that are
very close to those of the LCDM concordance model. However, we find that the
limitation of the models considered here comes from the presence of
superluminal mode propagations for the constrained parameter space of the
models.Comment: 12 pages, 6 figure
Constraints on neutrino masses from WMAP5 and BBN in the lepton asymmetric universe
In this paper, we put constraints on neutrino properties such as mass
and degeneracy parameters from WMAP5 data and light element
abundances by using a Markov chain Monte Carlo (MCMC) approach. In order to
take consistently into account the effects of the degeneracy parameters, we run
the Big Bang Nucleosynthesis code for each value of and the other
cosmological parameters to estimate the Helium abundance, which is then used to
calculate CMB anisotropy spectra instead of treating it as a free parameter. We
find that the constraint on is fairly robust and does not vary very
much even if the lepton asymmetry is allowed, and is given by ().Comment: 19 pages, 7 figures, 5 table
The Cosmology of Asymmetric Brane Modified Gravity
We consider the asymmetric branes model of modified gravity, which can
produce late time acceleration of the universe and compare the cosmology of
this model to the standard CDM model and to the DGP braneworld model.
We show how the asymmetric cosmology at relevant physical scales can be
regarded as a one-parameter extension of the DGP model, and investigate the
effect of this additional parameter on the expansion history of the universe.Comment: 21 pages, 9 figures, journal versio
