319 research outputs found
Predictors of Successful Decannulation Using a Tracheostomy Retainer in Patients with Prolonged Weaning and Persisting Respiratory Failure
Background: For percutaneously tracheostomized patients with prolonged weaning and persisting respiratory failure, the adequate time point for safe decannulation and switch to noninvasive ventilation is an important clinical issue. Objectives: We aimed to evaluate the usefulness of a tracheostomy retainer (TR) and the predictors of successful decannulation. Methods: We studied 166 of 384 patients with prolonged weaning in whom a TR was inserted into a tracheostoma. Patients were analyzed with regard to successful decannulation and characterized by blood gas values, the duration of previous spontaneous breathing, Simplified Acute Physiology Score (SAPS) and laboratory parameters. Results: In 47 patients (28.3%) recannulation was necessary, mostly due to respiratory decompensation and aspiration. Overall, 80.6% of the patients could be liberated from a tracheostomy with the help of a TR. The need for recannulation was associated with a shorter duration of spontaneous breathing within the last 24/48 h (p < 0.01 each), lower arterial oxygen tension (p = 0.025), greater age (p = 0.025), and a higher creatinine level (p = 0.003) and SAPS (p < 0.001). The risk for recannulation was 9.5% when patients breathed spontaneously for 19-24 h within the 24 h prior to decannulation, but 75.0% when patients breathed for only 0-6 h without ventilatory support (p < 0.001). According to ROC analysis, the SAPS best predicted successful decannulation {[}AUC 0.725 (95% CI: 0.634-0.815), p < 0.001]. Recannulated patients had longer durations of intubation (p = 0.046), tracheostomy (p = 0.003) and hospital stay (p < 0.001). Conclusion: In percutaneously tracheostomized patients with prolonged weaning, the use of a TR seems to facilitate and improve the weaning process considerably. The duration of spontaneous breathing prior to decannulation, age and oxygenation describe the risk for recannulation in these patients. Copyright (c) 2012 S. Karger AG, Base
Neutrino Signatures From Young Neutron Stars
After a successful core collapse supernova (CCSN) explosion, a hot dense proto-neutron star (PNS) is left as a remnant. Over a time of 20 or so seconds, this PNS emits the majority of the neutrinos that come from the CCSN, contracts, and loses most of its lepton number. This is the process by which all neutron stars in our galaxy are likely born. The emitted neutrinos were detected from supernova (SN) 1987A, and they will be detected in much greater numbers from any future galactic CCSN. These detections can provide a direct window into the properties of the dense matter encountered inside neutron stars, and they can affect nucleosynthesis in the material ejected during the CCSN. In this chapter, we review the basic physics of PNS cooling, including the basic equations of PNS structure and neutrino diffusion in dense matter. We then discuss how the nuclear equation of state, neutrino opacities in dense matter, and convection can shape the temporal behavior of the neutrino signal. We also discuss what was learned from the late-time SN 1987A neutrinos, the prospects for detection of these neutrinos from future galactic CCSNe, and the effects these neutrinos can have on nucleosynthesis
Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management
Atrioventricular block is classified as congeni-
tal if diagnosed in utero, at birth, or within the first
month of life. The pathophysiological process is believed
to be due to immune-mediated injury of the conduction
system, which occurs as a result of transplacental pas-
sage of maternal anti-SSA/Ro-SSB/La antibodies.
Childhood atrioventricular block is therefore diagnosed
between the first month and the 18th year of life.
Genetic variants in multiple genes have been described
to date in the pathogenesis of inherited progressive car-
diac conduction disorders. Indications and techniques of
cardiac pacing have also evolved to allow safe perma-
nent cardiac pacing in almost all patients, including
those with structural heart abnormalities
Сетевая система контроля технологического процесса выращивания полупроводниковых кристаллов и тонких пленок
Экспериментальное моделирование аппаратно-программного обеспечения показало достаточную надежность работы системы и значительное уменьшение трудоемкости контроля и управления параметрами технологического процесса
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
The Spread of Inequality
The causes of socioeconomic inequality have been debated since the time of Plato. Many reasons for the development of stratification have been proposed, from the need for hierarchical control over large-scale irrigation systems to the accumulation of small differences in wealth over time via inheritance processes. However, none of these explains how unequal societies came to completely displace egalitarian cultural norms over time. Our study models demographic consequences associated with the unequal distribution of resources in stratified societies. Agent-based simulation results show that in constant environments, unequal access to resources can be demographically destabilizing, resulting in the outward migration and spread of such societies even when population size is relatively small. In variable environments, stratified societies spread more and are also better able to survive resource shortages by sequestering mortality in the lower classes. The predictions of our simulation are provided modest support by a range of existing empirical studies. In short, the fact that stratified societies today vastly outnumber egalitarian societies may not be due to the transformation of egalitarian norms and structures, but may instead reflect the more rapid migration of stratified societies and consequent conquest or displacement of egalitarian societies over time
Developmental norms for the Gardner Steadiness Test and the Purdue Pegboard: a study with children of a metropolitan school in Brazil
- …
