856 research outputs found

    Representation of cognitive reappraisal goals in frontal gamma oscillations

    Get PDF
    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: To decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.open0

    Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines

    Get PDF
    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections

    Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions

    Get PDF
    Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)

    Strategies to improve reference databases for soil microbiomes

    Get PDF
    Microbial populations in the soil are critical in our lives. The soil microbiome helps to grow our food, nourishing and protecting plants, while also providing important ecological services such as erosion protection, water filtration and climate regulation. We are increasingly aware of the tremendous microbial diversity that has a role in soil heath; yet, despite significant efforts to isolate microbes from the soil, we have accessed only a small fraction of its biodiversity. Even with novel cell isolation techniques

    Thy-1 Attenuates TNF-α-Activated Gene Expression in Mouse Embryonic Fibroblasts via Src Family Kinase

    Get PDF
    Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci) in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-α. Our study demonstrates distinct profiles of TNF-α-activated gene expression in Thy-1 positive (Thy-1+) and negative (Thy-1−) subsets of mouse embryonic fibroblasts (MEF). TNF-α induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1− MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1− MEFs significantly attenuated TNF-α-activated gene expression. Mechanistically, TNF-α activated Src family kinase (SFK) only in Thy-1− MEFs. Blockade of SFK activation abrogated TNF-α-activated gene expression in Thy-1− MEFs, whereas restoration of SFK activation rescued the TNF-α response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-α-activated gene expression via interfering with SFK- and NF-κB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation

    Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.</p> <p>Results</p> <p>More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.</p> <p>Conclusion</p> <p>We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.</p

    Full-Exon Pyrosequencing Screening of BRCA Germline Mutations in Mexican Women with Inherited Breast and Ovarian Cancer

    Get PDF
    Hereditary breast cancer comprises 10% of all breast cancers. The most prevalent genes causing this pathology are BRCA1 and BRCA2 (breast cancer early onset 1 and 2), which also predispose to other cancers. Despite the outstanding relevance of genetic screening of BRCA deleterious variants in patients with a history of familial cancer, this practice is not common in Latin American public institutions. In this work we assessed mutations in the entire exonic and splice-site regions of BRCA in 39 patients with breast and ovarian cancer and with familial history of breast cancer or with clinical features suggestive for BRCA mutations by massive parallel pyrosequencing. First we evaluated the method with controls and found 41–485 reads per sequence in BRCA pathogenic mutations. Negative controls did not show deleterious variants, confirming the suitability of the approach. In patients diagnosed with cancer we found 4 novel deleterious mutations (c.2805_2808delAGAT and c.3124_3133delAGCAATATTA in BRCA1; c.2639_2640delTG and c.5114_5117delTAAA in BRCA2). The prevalence of BRCA mutations in these patients was 10.2%. Moreover, we discovered 16 variants with unknown clinical significance (11 in exons and 5 in introns); 4 were predicted as possibly pathogenic by in silico analyses, and 3 have not been described previously. This study illustrates how massive pyrosequencing technology can be applied to screen for BRCA mutations in the whole exonic and splice regions in patients with suspected BRCA-related cancers. This is the first effort to analyse the mutational status of BRCA genes on a Mexican-mestizo population by means of pyrosequencing

    Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    Get PDF
    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens
    corecore