10 research outputs found

    Molecular signatures of T-cell inhibition in HIV-1 infection

    Get PDF

    Molecular signatures of T-cell inhibition in HIV-1 infection

    Get PDF
    Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-cell responses in HIV infection both in vitro and in vivo. The expression of these molecules that negatively impacts the normal functions of the host immune armory and the underlying signaling pathways associated with their enhanced expression need to be discussed. Targets to restrain the expression of these molecular markers of immune inhibition is likely to contribute to development of therapeutic interventions that augment the functionality of host immune cells leading to improved immune control of HIV infection. In this review, we focus on the functions of inhibitory molecules that are expressed or secreted following HIV infection such as BTLA, CTLA-4, CD160, IDO, KLRG1, LAG-3, LILRB1, PD-1, TRAIL, TIM-3, and regulatory cytokines, and highlight their significance in immune inhibition. We also highlight the ensemble of transcriptional factors such as BATF, BLIMP-1/PRDM1, FoxP3, DTX1 and molecular pathways that facilitate the recruitment and differentiation of suppressor T cells in response to HIV infection.Funding Agencies|University of Malaya Research Grant (UMRG) of the Health and Translational Medicine Research Cluster, University of Malaya, Kuala Lumpur|RG448-12HTM|Swedish Research Council||Swedish Physicians against AIDS Research Foundation||Swedish International Development Cooperation Agency||SIDA SARC||VINNMER for Vinnova||Linkping University Hospital Research Fund||CALF||Swedish Society of Medicine||Ministry of Higher Education Malaysia, High Impact Research Grant|HIRGA E000001-20001||AI52731|</p

    None of the Above

    No full text

    Literaturverzeichnis

    No full text

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
    corecore