7,659 research outputs found
Serum cholesterol levels in neutropenic patients with fever
Hypocholesterolemia, which often accompanies infectious diseases has been suggested to serve as a prognostic marker in hospitalized patients. Even though patients with chemotherapyinduced leukopenia are at high risk of infection and mortality, only limited information is available on serum cholesterol levels in these patients. We therefore measured serum cholesterol levels in 17 patients with hematological malignancies during chemotherapyinduced neutropenia and correlated it with clinical outcome. Patients with fever (>38.5 degreesC) showed a significant decrease in serum cholesterol levels within 24 hours. Eight days after onset of the fever nonsurvivors had significantly lower serum cholesterol levels (median 2.09 mmol/l, range 0.492.79, n=6) compared to survivors (median 3.23 mmol/l, range 1.684.86, n=11). Cholesterol levels in survivors returned to baseline levels at the time of discharge from the hospital. At the onset of fever, serum levels of inflammatory cytokines interleukin-6, tumor necrosis factor (TNF) and soluble TNF receptors p55 and p75 were elevated in all patients, but only TNF and TNF receptor p75 levels were significantly different in survivors and nonsurvivors. Our data suggest that a decrease in serum cholesterol levels is a prognostic marker in neutropenic patients with fever. Release of inflammatory cytokines may in part be responsible for hypocholesterolemia in these patients
Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks
We propose an automatic diabetic retinopathy (DR) analysis algorithm based on
two-stages deep convolutional neural networks (DCNN). Compared to existing
DCNN-based DR detection methods, the proposed algorithm have the following
advantages: (1) Our method can point out the location and type of lesions in
the fundus images, as well as giving the severity grades of DR. Moreover, since
retina lesions and DR severity appear with different scales in fundus images,
the integration of both local and global networks learn more complete and
specific features for DR analysis. (2) By introducing imbalanced weighting map,
more attentions will be given to lesion patches for DR grading, which
significantly improve the performance of the proposed algorithm. In this study,
we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus
images from Kaggle competition dataset. Under the guidance of clinical
ophthalmologists, the experimental results show that our local lesion detection
net achieve comparable performance with trained human observers, and the
proposed imbalanced weighted scheme also be proved to significantly improve the
capability of our DCNN-based DR grading algorithm
Regularity of Edge Ideals and Their Powers
We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals
of graphs and their powers. Our focus is on bounds and exact values of and the asymptotic linear function , for in terms of combinatorial data of the given graph Comment: 31 pages, 15 figure
Metabolic analysis of the interaction between plants and herbivores
Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.
Symbolic powers of monomial ideals and Cohen-Macaulay vertex-weighted digraphs
In this paper we study irreducible representations and symbolic Rees algebras
of monomial ideals. Then we examine edge ideals associated to vertex-weighted
oriented graphs. These are digraphs having no oriented cycles of length two
with weights on the vertices. For a monomial ideal with no embedded primes we
classify the normality of its symbolic Rees algebra in terms of its primary
components. If the primary components of a monomial ideal are normal, we
present a simple procedure to compute its symbolic Rees algebra using Hilbert
bases, and give necessary and sufficient conditions for the equality between
its ordinary and symbolic powers. We give an effective characterization of the
Cohen--Macaulay vertex-weighted oriented forests. For edge ideals of transitive
weighted oriented graphs we show that Alexander duality holds. It is shown that
edge ideals of weighted acyclic tournaments are Cohen--Macaulay and satisfy
Alexander dualityComment: Special volume dedicated to Professor Antonio Campillo, Springer, to
appea
Sisyphus cooling and amplification by a superconducting qubit
Laser cooling of the atomic motion paved the way for remarkable achievements
in the fields of quantum optics and atomic physics, including Bose-Einstein
condensation and the trapping of atoms in optical lattices. More recently
superconducting qubits were shown to act as artificial two-level atoms,
displaying Rabi oscillations, Ramsey fringes, and further quantum effects.
Coupling such qubits to resonators brought the superconducting circuits into
the realm of quantum electrodynamics (circuit QED). It opened the perspective
to use superconducting qubits as micro-coolers or to create a population
inversion in the qubit to induce lasing behavior of the resonator. Furthering
these analogies between quantum optical and superconducting systems we
demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a
near-resonantly driven superconducting qubit. In the quantum optics setup the
mechanical degrees of freedom of an atom are cooled by laser driving the atom's
electronic degrees of freedom. Here the roles of the two degrees of freedom are
played by the LC circuit and the qubit's levels, respectively. We also
demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus
amplification. Parallel to the experimental demonstration we analyze the system
theoretically and find quantitative agreement, which supports the
interpretation and allows us to estimate system parameters.Comment: 7 pages, 4 figure
Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review
Background:
Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p>
Methods/Principal Findings:
We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p>
Conclusions/Significance:
C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p>
Odour-mediated orientation of beetles is influenced by age, sex and morph
The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
- …
