6,995 research outputs found
Evolutionary Inference via the Poisson Indel Process
We address the problem of the joint statistical inference of phylogenetic
trees and multiple sequence alignments from unaligned molecular sequences. This
problem is generally formulated in terms of string-valued evolutionary
processes along the branches of a phylogenetic tree. The classical evolutionary
process, the TKF91 model, is a continuous-time Markov chain model comprised of
insertion, deletion and substitution events. Unfortunately this model gives
rise to an intractable computational problem---the computation of the marginal
likelihood under the TKF91 model is exponential in the number of taxa. In this
work, we present a new stochastic process, the Poisson Indel Process (PIP), in
which the complexity of this computation is reduced to linear. The new model is
closely related to the TKF91 model, differing only in its treatment of
insertions, but the new model has a global characterization as a Poisson
process on the phylogeny. Standard results for Poisson processes allow key
computations to be decoupled, which yields the favorable computational profile
of inference under the PIP model. We present illustrative experiments in which
Bayesian inference under the PIP model is compared to separate inference of
phylogenies and alignments.Comment: 33 pages, 6 figure
RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language.
Programs for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems. RevBayes is entirely based on probabilistic graphical models, a powerful generic framework for specifying and analyzing statistical models. Phylogenetic-graphical models can be specified interactively in RevBayes, piece by piece, using a new succinct and intuitive language called Rev. Rev is similar to the R language and the BUGS model-specification language, and should be easy to learn for most users. The strength of RevBayes is the simplicity with which one can design, specify, and implement new and complex models. Fortunately, this tremendous flexibility does not come at the cost of slower computation; as we demonstrate, RevBayes outperforms competing software for several standard analyses. Compared with other programs, RevBayes has fewer black-box elements. Users need to explicitly specify each part of the model and analysis. Although this explicitness may initially be unfamiliar, we are convinced that this transparency will improve understanding of phylogenetic models in our field. Moreover, it will motivate the search for improvements to existing methods by brazenly exposing the model choices that we make to critical scrutiny. RevBayes is freely available at http://www.RevBayes.com [Bayesian inference; Graphical models; MCMC; statistical phylogenetics.]
The impact of fire on habitat use by the short-snouted elephant shrew ('Elephantulus brachyrhynchus') in North West Province, South Africa
Several studies have investigated the response of small mammal populations to fire, but few have investigated behavioural responses to habitat modification. In this study we investigated the impact of fire on home range, habitat use and activity patterns of the short-snouted elephant shrew (Elephantulus brachyrhynchus) by radio-tracking individuals before and after a fire event. All animals survived the passage of fire in termite mound refugia. Before the fire, grassland was used more than thickets, but habitat utilization shifted to thickets after fire had removed the grass cover. Thickets were an important refuge both pre- and post-fire, but the proportion of thicket within the home range was greater post-fire. We conclude that fire-induced habitat modification resulted in a restriction of E. brachyrhynchus movements to patches of unburned vegetation. This may be a behavioural response to an increase in predation pressure associated with a reduction in cover, rather than a lack of food. This study highlights the importance of considering the landscape mosaic in fire management and allowing sufficient island patches to remain post-fire ensures the persistence of the small mammal fauna
Probabilistic Graphical Model Representation in Phylogenetics
Recent years have seen a rapid expansion of the model space explored in
statistical phylogenetics, emphasizing the need for new approaches to
statistical model representation and software development. Clear communication
and representation of the chosen model is crucial for: (1) reproducibility of
an analysis, (2) model development and (3) software design. Moreover, a
unified, clear and understandable framework for model representation lowers the
barrier for beginners and non-specialists to grasp complex phylogenetic models,
including their assumptions and parameter/variable dependencies.
Graphical modeling is a unifying framework that has gained in popularity in
the statistical literature in recent years. The core idea is to break complex
models into conditionally independent distributions. The strength lies in the
comprehensibility, flexibility, and adaptability of this formalism, and the
large body of computational work based on it. Graphical models are well-suited
to teach statistical models, to facilitate communication among phylogeneticists
and in the development of generic software for simulation and statistical
inference.
Here, we provide an introduction to graphical models for phylogeneticists and
extend the standard graphical model representation to the realm of
phylogenetics. We introduce a new graphical model component, tree plates, to
capture the changing structure of the subgraph corresponding to a phylogenetic
tree. We describe a range of phylogenetic models using the graphical model
framework and introduce modules to simplify the representation of standard
components in large and complex models. Phylogenetic model graphs can be
readily used in simulation, maximum likelihood inference, and Bayesian
inference using, for example, Metropolis-Hastings or Gibbs sampling of the
posterior distribution
Estimating selection pressures on HIV-1 using phylogenetic likelihood models
Human immunodeficiency virus (HIV-1) can rapidly evolve due to selection pressures exerted by HIV-specific immune responses, antiviral agents, and to allow the virus to establish infection in different compartments in the body. Statistical models applied to HIV-1 sequence data can help to elucidate the nature of these selection pressures through comparisons of non-synonymous (or amino acid changing) and synonymous (or amino acid preserving) substitution rates. These models also need to take into account the non-independence of sequences due to their shared evolutionary history. We review how we have developed these methods and have applied them to characterize the evolution of HIV-1 in vivo.To illustrate our methods, we present an analysis of compartment-specific evolution of HIV-1 env in blood and cerebrospinal fluid and of site-to-site variation in the gag gene of subtype C HIV-1
- …
