1,958 research outputs found
Apollo experience report: Assessment of metabolic expenditures
A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included
Recommended from our members
Calcium puffs are generic InsP<sub>3</sub>-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses
Elementary Ca2+ signals, such as "Ca2+ puffs", which arise from the activation of inositol 1,4,5-trisphosphate receptors, are building blocks for local and global Ca2+ signalling. We characterized Ca2+ puffs in six cell types that expressed differing ratios of the three inositol 1,4,5-trisphosphate receptor isoforms. The amplitudes, spatial spreads and kinetics of the events were similar in each of the cell types. The resemblance of Ca2+ puffs in these cell types suggests that they are a generic elementary Ca2+ signal and, furthermore, that the different inositol 1,4,5-trisphosphate isoforms are functionally redundant at the level of subcellular Ca2+ signalling. Hormonal stimulation of SH-SY5Y neuroblastoma cells and HeLa cells for several hours downregulated inositol 1,4,5-trisphosphate expression and concomitantly altered the properties of the Ca2+ puffs. The amplitude and duration of Ca2+ puffs were substantially reduced. In addition, the number of Ca2+ puff sites active during the onset of a Ca2+ wave declined. The consequence of the changes in Ca2+ puff properties was that cells displayed a lower propensity to trigger regenerative Ca2+ waves. Therefore, Ca2+ puffs underlie inositol 1,4,5-trisphosphate signalling in diverse cell types and are focal points for regulation of cellular responses
On Charge-3 Cyclic Monopoles
We determine the spectral curve of charge 3 BPS su(2) monopoles with C_3
cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a
(Toda) spectral curve of genus 2. A well adapted homology basis is presented
enabling the theta functions and monopole data of the genus 4 curve to be given
in terms of genus 2 data. The Richelot correspondence, a generalization of the
arithmetic mean, is used to solve for this genus 2 curve. Results of other
approaches are compared.Comment: 34 pages, 16 figures. Revision: Abstract added and a few small
change
Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges
Hydrogenated graphene edges are assumed to be either armchair, zigzag or a
combination of the two. We show that the zigzag is not the most stable fully
hydrogenated structure along the direction. Instead hydrogenated Klein
and reconstructed Klein based edges are found to be energetically more
favourable, with stabilities approaching that of armchair edges. These new
structures "unify" graphene edge topology, the most stable flat hydrogenated
graphene edges always consisting of pairwise bonded C2H4 edge groups,
irrespective the edge orientation. When edge rippling is included, CH3 edge
groups are most stable. These new fundamental hydrogen terminated edges have
important implications for graphene edge imaging and spectroscopy, as well as
mechanisms for graphene growth, nanotube cutting, and nanoribbon formation and
behaviour.Fundação para a Ciência e a Tecnologia (FCT
Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases
Disorder plays a crucial role in many systems particularly in solid state
physics. However, the disorder in a particular system can usually not be chosen
or controlled. We show that the unique control available for ultracold atomic
gases may be used for the production and observation of disordered quantum
degenerate gases. A detailed analysis of localization effects for two possible
realizations of a disordered potential is presented. In a theoretical analysis
clear localization effects are observed when a superlattice is used to provide
a quasiperiodic disorder. The effects of localization are analyzed by
investigating the superfluid fraction and the localization length within the
system. The theoretical analysis in this paper paves a clear path for the
future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
Exact and explicit probability densities for one-sided Levy stable distributions
We study functions g_{\alpha}(x) which are one-sided, heavy-tailed Levy
stable probability distributions of index \alpha, 0< \alpha <1, of fundamental
importance in random systems, for anomalous diffusion and fractional kinetics.
We furnish exact and explicit expression for g_{\alpha}(x), 0 \leq x < \infty,
satisfying \int_{0}^{\infty} exp(-p x) g_{\alpha}(x) dx = exp(-p^{\alpha}),
p>0, for all \alpha = l/k < 1, with k and l positive integers. We reproduce all
the known results given by k\leq 4 and present many new exact solutions for k >
4, all expressed in terms of known functions. This will allow a 'fine-tuning'
of \alpha in order to adapt g_{\alpha}(x) to a given experimental situation.Comment: 4 pages, 3 figures and 1 tabl
Bose–Einstein condensation in large time-averaged optical ring potentials
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose–Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 μm are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
- …
