1,958 research outputs found

    Apollo experience report: Assessment of metabolic expenditures

    Get PDF
    A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included

    On Charge-3 Cyclic Monopoles

    Get PDF
    We determine the spectral curve of charge 3 BPS su(2) monopoles with C_3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared.Comment: 34 pages, 16 figures. Revision: Abstract added and a few small change

    Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges

    Get PDF
    Hydrogenated graphene edges are assumed to be either armchair, zigzag or a combination of the two. We show that the zigzag is not the most stable fully hydrogenated structure along the direction. Instead hydrogenated Klein and reconstructed Klein based edges are found to be energetically more favourable, with stabilities approaching that of armchair edges. These new structures "unify" graphene edge topology, the most stable flat hydrogenated graphene edges always consisting of pairwise bonded C2H4 edge groups, irrespective the edge orientation. When edge rippling is included, CH3 edge groups are most stable. These new fundamental hydrogen terminated edges have important implications for graphene edge imaging and spectroscopy, as well as mechanisms for graphene growth, nanotube cutting, and nanoribbon formation and behaviour.Fundação para a Ciência e a Tecnologia (FCT

    Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases

    Get PDF
    Disorder plays a crucial role in many systems particularly in solid state physics. However, the disorder in a particular system can usually not be chosen or controlled. We show that the unique control available for ultracold atomic gases may be used for the production and observation of disordered quantum degenerate gases. A detailed analysis of localization effects for two possible realizations of a disordered potential is presented. In a theoretical analysis clear localization effects are observed when a superlattice is used to provide a quasiperiodic disorder. The effects of localization are analyzed by investigating the superfluid fraction and the localization length within the system. The theoretical analysis in this paper paves a clear path for the future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure

    Exact and explicit probability densities for one-sided Levy stable distributions

    Full text link
    We study functions g_{\alpha}(x) which are one-sided, heavy-tailed Levy stable probability distributions of index \alpha, 0< \alpha <1, of fundamental importance in random systems, for anomalous diffusion and fractional kinetics. We furnish exact and explicit expression for g_{\alpha}(x), 0 \leq x < \infty, satisfying \int_{0}^{\infty} exp(-p x) g_{\alpha}(x) dx = exp(-p^{\alpha}), p>0, for all \alpha = l/k < 1, with k and l positive integers. We reproduce all the known results given by k\leq 4 and present many new exact solutions for k > 4, all expressed in terms of known functions. This will allow a 'fine-tuning' of \alpha in order to adapt g_{\alpha}(x) to a given experimental situation.Comment: 4 pages, 3 figures and 1 tabl

    Bose–Einstein condensation in large time-averaged optical ring potentials

    Get PDF
    Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose–Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 μm are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
    corecore