919 research outputs found
Oceanic adults, coastal juveniles: tracking the habitat use of whale sharks off the Pacific coast of Mexico
Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California,
Mexico, were tracked for periods of 14–134 days. Five of these sharks were adults, with
four females visually assessed to be pregnant. At least for the periods they were tracked,
juveniles remained in the Gulf of California while adults moved offshore into the eastern
Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding
two juveniles that remained in the shallow tagging area for the duration of tracking,
all sharks spent 65
±
20.7% (SD) of their time near the surface, even over deep water,
often in association with frontal zones characterized by cool-water upwelling. While
these six sharks all made dives into the meso- or bathypelagic zones, with two sharks
reaching the maximum depth recordable by the tags (1285.8 m), time spent at these
depths represented a small proportion of the overall tracks. Most deep dives (72.7%)
took place during the day, particularly during the early morning and late afternoon.
Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks
are less likely to frequent coastal waters after the onset of maturity
On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres
This paper focuses on the modeling of musical melodies as networks. Notes of
a melody can be treated as nodes of a network. Connections are created whenever
notes are played in sequence. We analyze some main tracks coming from different
music genres, with melodies played using different musical instruments. We find
out that the considered networks are, in general, scale free networks and
exhibit the small world property. We measure the main metrics and assess
whether these networks can be considered as formed by sub-communities. Outcomes
confirm that peculiar features of the tracks can be extracted from this
analysis methodology. This approach can have an impact in several multimedia
applications such as music didactics, multimedia entertainment, and digital
music generation.Comment: accepted to Multimedia Tools and Applications, Springe
Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish
The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
Optimizing Functional Network Representation of Multivariate Time Series
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks
Association between footwear use and neglected tropical diseases: a systematic review and meta-analysis
BACKGROUND
The control of neglected tropical diseases (NTDs) has primarily focused on preventive chemotherapy and case management. Less attention has been placed on the role of ensuring access to adequate water, sanitation, and hygiene and personal preventive measures in reducing exposure to infection. Our aim was to assess whether footwear use was associated with a lower risk of selected NTDs.
METHODOLOGY
We conducted a systematic review and meta-analysis to assess the association between footwear use and infection or disease for those NTDs for which the route of transmission or occurrence may be through the feet. We included Buruli ulcer, cutaneous larva migrans (CLM), leptospirosis, mycetoma, myiasis, podoconiosis, snakebite, tungiasis, and soil-transmitted helminth (STH) infections, particularly hookworm infection and strongyloidiasis. We searched Medline, Embase, Cochrane, Web of Science, CINAHL Plus, and Popline databases, contacted experts, and hand-searched reference lists for eligible studies. The search was conducted in English without language, publication status, or date restrictions up to January 2014. Studies were eligible for inclusion if they reported a measure of the association between footwear use and the risk of each NTD. Publication bias was assessed using funnel plots. Descriptive study characteristics and methodological quality of the included studies were summarized. For each study outcome, both outcome and exposure data were abstracted and crude and adjusted effect estimates presented. Individual and summary odds ratio (OR) estimates and corresponding 95% confidence intervals (CIs) were calculated as a measure of intervention effect, using random effects meta-analyses.
PRINCIPAL FINDINGS
Among the 427 studies screened, 53 met our inclusion criteria. Footwear use was significantly associated with a lower odds of infection of Buruli ulcer (OR=0.15; 95% CI: 0.08-0.29), CLM (OR=0.24; 95% CI: 0.06-0.96), tungiasis (OR=0.42; 95% CI: 0.26-0.70), hookworm infection (OR=0.48; 95% CI: 0.37-0.61), any STH infection (OR=0.57; 95% CI: 0.39-0.84), strongyloidiasis (OR=0.56; 95% CI: 0.38-0.83), and leptospirosis (OR=0.59; 95% CI: 0.37-0.94). No significant association between footwear use and podoconiosis (OR=0.63; 95% CI: 0.38-1.05) was found and no data were available for mycetoma, myiasis, and snakebite. The main limitations were evidence of heterogeneity and poor study quality inherent to the observational studies included.
CONCLUSIONS/SIGNIFICANCE
Our results show that footwear use was associated with a lower odds of several different NTDs. Access to footwear should be prioritized alongside existing NTD interventions to ensure a lasting reduction of multiple NTDs and to accelerate their control and elimination.
PROTOCOL REGISTRATION
PROSPERO International prospective register of systematic reviews CRD42012003338
Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy
How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù
- …
