1,006 research outputs found
Constructing a Stochastic Model of Bumblebee Flights from Experimental Data
PMCID: PMC3592844This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Neighborhoods of trees in circular orderings
In phylogenetics, a common strategy used to construct an evolutionary tree for a set of species X is to search in the space of all such trees for one that optimizes some given score function (such as the minimum evolution, parsimony or likelihood score). As this can be computationally intensive, it was recently proposed to restrict such searches to the set of all those trees that are compatible with some circular ordering of the set X. To inform the design of efficient algorithms to perform such searches, it is therefore of interest to find bounds for the number of trees compatible with a fixed ordering in the neighborhood of a tree that is determined by certain tree operations commonly used to search for trees: the nearest neighbor interchange (nni), the subtree prune and regraft (spr) and the tree bisection and reconnection (tbr) operations. We show that the size of such a neighborhood of a binary tree associated with the nni operation is independent of the tree’s topology, but that this is not the case for the spr and tbr operations. We also give tight upper and lower bounds for the size of the neighborhood of a binary tree for the spr and tbr operations and characterize those trees for which these bounds are attained
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.
Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk
MIRO: A robot “Mammal” with a biomimetic brain-based control system
We describe the design of a novel commercial biomimetic brain-based robot, MIRO, developed as a prototype robot companion. The MIRO robot is animal-like in several aspects of its appearance, however, it is also biomimetic in a more significant way, in that its control architecture mimics some of the key principles underlying the design of the mammalian brain as revealed by neuroscience. Specifically, MIRO builds on decades of previous work in developing robots with brain-based control systems using a layered control architecture alongside centralized mechanisms for integration and action selection. MIRO’s control system operates across three core processors, P1-P3, that mimic aspects of spinal cord, brainstem, and forebrain functionality respectively. Whilst designed as a versatile prototype for next generation companion robots, MIRO also provides developers and researchers with a new platform for investigating the potential advantages of brain-based control
Designing of space oriented body parts with the use of modern technologies
Proper selection of the gating system for investment pattern is a long and labor-intensive process that requires significant resources. The latest design technologies enable the calculation of the gating system and simulation of the casting process based on these calculations. Simulation and calculation of the gating system make it possible to determine defects which occur during the casting process at the design stage. The result of simulation is the distribution of flow and temperature velocity vectors. The process of cooling and crystallization is simulated, as well as a mold filling process. Analyzing these data and changing the characteristics of the gating system, it is possible to achieve the very high quality of castings
A new framework for cortico-striatal plasticity: behavioural theory meets In vitro data at the reinforcement-action interface
Operant learning requires that reinforcement signals interact with action representations at a suitable neural interface. Much evidence suggests that this occurs when phasic dopamine, acting as a reinforcement prediction error, gates plasticity at cortico-striatal synapses, and thereby changes the future likelihood of selecting the action(s) coded by striatal neurons. But this hypothesis faces serious challenges. First, cortico-striatal plasticity is inexplicably complex, depending on spike timing, dopamine level, and dopamine receptor type. Second, there is a credit assignment problem—action selection signals occur long before the consequent dopamine reinforcement signal. Third, the two types of striatal output neuron have apparently opposite effects on action selection. Whether these factors rule out the interface hypothesis and how they interact to produce reinforcement learning is unknown. We present a computational framework that addresses these challenges. We first predict the expected activity changes over an operant task for both types of action-coding striatal neuron, and show they co-operate to promote action selection in learning and compete to promote action suppression in extinction. Separately, we derive a complete model of dopamine and spike-timing dependent cortico-striatal plasticity from in vitro data. We then show this model produces the predicted activity changes necessary for learning and extinction in an operant task, a remarkable convergence of a bottom-up data-driven plasticity model with the top-down behavioural requirements of learning theory. Moreover, we show the complex dependencies of cortico-striatal plasticity are not only sufficient but necessary for learning and extinction. Validating the model, we show it can account for behavioural data describing extinction, renewal, and reacquisition, and replicate in vitro experimental data on cortico-striatal plasticity. By bridging the levels between the single synapse and behaviour, our model shows how striatum acts as the action-reinforcement interface
Quantification and identification of sperm subpopulations using computer-aided sperm analysis and species-specific cut-off values for swimming speed
Motility is an essential characteristic of all fl agellated spermatozoa and assessment of this parameter
is one criterion for most semen or sperm evaluations. Computer-aided sperm analysis (CASA)
can be used to measure sperm motility more objectively and accurately than manual methods,
provided that analysis techniques are standardized. Previous studies have shown that evaluation
of sperm subpopulations is more important than analyzing the total motile sperm population
alone. We developed a quantitative method to determine cut-off values for swimming speed to
identify three sperm subpopulations. We used the Sperm Class Analyzer ® (SCA) CASA system
to assess the total percentage of motile spermatozoa in a sperm preparation as well as the
percentages of rapid, medium and slow swimming spermatozoa for six mammalian species.
Curvilinear velocity (VCL) cut-off values were adjusted manually for each species to include 80%
rapid, 15% medium and 5% slow swimming spermatozoa. Our results indicate that the same VCL
intervals cannot be used for all species to classify spermatozoa according to swimming speed.
After VCL intervals were adjusted for each species, three unique sperm subpopulations could be
identifi ed. The effects of medical treatments on sperm motility become apparent in changes in
the distribution of spermatozoa among the three swimming speed classes.Web of Scienc
Modelling mammalian energetics: the heterothermy problem
Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models
Detection of elder abuse: exploring the potential use of the elder abuse suspicion index© by law enforcement in the field
There are no known instruments to aid law enforcement officers in the assessment of elder abuse (EA), despite officers’ contact with older adults. This study aimed to identify: 1) officers’ perceptions and knowledge of EA, 2) barriers in detecting EA in the field, 3) characteristics officers value in a detection tool, and to explore 4) the potential for officers to use the Elder Abuse Suspicion Index (EASI)©. Data was collected from 69 Connecticut officers who confirmed that barriers to effectively detecting EA included a lack of EA detection instruments, as well as a lack of training on warning signs and risk factors. Officers indicated that the important elements of a desirable tool for helping to detect EA included ease of use, clear instructions, and information on follow-up resources. Approximately 80% of respondents could see themselves using the EASI© in the field, and a modified version has been developed for this purpose
- …
