191 research outputs found
PIERCE1 is critical for specification of left-right asymmetry in mice.
The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the DNA damage response. In this study, we found that Pierce1-null mice exhibit severe laterality defects, including situs inversus totalis and heterotaxy with randomized situs and left and right isomerisms. The spectrum of laterality defects was closely correlated with randomized expression of Nodal and its downstream genes, Lefty1/2 and Pitx2. The phenotype of Pierce1-null mice most closely resembled that of mutant mice with impaired ciliogenesis and/or ciliary motility of the node. We also found the loss of asymmetric expression of Cerl2, the earliest flow-responding gene in the node of Pierce1-null embryos. The results suggest that Pierce1-null embryos have defects in generating a symmetry breaking signal including leftward nodal flow. This is the first report implicating a role for PIERCE1 in the symmetry-breaking step of left-right asymmetry specification.1110Ysciescopu
Brazilin Isolated from Caesalpinia sappan Suppresses Nuclear Envelope Reassembly by Inhibiting Barrier-to-Autointegration Factor Phosphorylation
To date, many anticancer drugs have been developed by directly or indirectly targeting microtubules, which are involved in cell division. Although this approach has yielded many anticancer drugs, these drugs produce undesirable side effects. An alternative strategy is needed, and targeting mitotic exit may be one alternative approach. Localization of phosphorylated barrier-to-autointegration factor (BAF) to the chromosomal core region is essential for nuclear envelope compartment relocalization. In this study, we isolated brazilin from Caesalpinia sappan Leguminosae and demonstrated that it inhibited BAF phosphorylation in vitro and in vivo. Moreover, we demonstrated direct binding between brazilin and BAF. The inhibition of BAF phosphorylation induced abnormal nuclear envelope reassembly and cell death, indicating that perturbation of nuclear envelope reassembly could be a novel approach to anticancer therapy. We propose that brazilin isolated from C. sappan may be a new anticancer drug candidate that induces cell death by inhibiting vaccinia-related kinase 1-mediated BAF phosphorylation.X1153Ysciescopu
Stigma Snapshot: Filipino and Korean Community: Informing hepatitis B prevention, testing, and treatment programs
Mechanisms of Hearing Loss after Blast Injury to the Ear
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of
increasing interest. The ear is the most common organ affected by blast injury because it is the bodyメs most sensitive
pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a
reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after
blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or
otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion
product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold
shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes,
indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or
damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the
cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that
recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not
include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory
dysfunction
miR-210: fine-tuning the hypoxic response
Hypoxia is a central component of the tumor microenvironment and represents a major source of therapeutic failure in cancer therapy. Recent work has provided a wealth of evidence that noncoding RNAs and, in particular, microRNAs, are significant members of the adaptive response to low oxygen in tumors. All published studies agree that miR-210 specifically is a robust target of hypoxia-inducible factors, and the induction of miR-210 is a consistent characteristic of the hypoxic response in normal and transformed cells. Overexpression of miR-210 is detected in most solid tumors and has been linked to adverse prognosis in patients with soft-tissue sarcoma, breast, head and neck, and pancreatic cancer. A wide variety of miR-210 targets have been identified, pointing to roles in the cell cycle, mitochondrial oxidative metabolism, angiogenesis, DNA damage response, and cell survival. Additional microRNAs seem to be modulated by low oxygen in a more tissue-specific fashion, adding another layer of complexity to the vast array of protein-coding genes regulated by hypoxia
Associations between social network properties and metabolic syndrome and the mediating effect of physical activity: findings from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Cohort
INTRODUCTION: Social isolation and loneliness are positively associated with metabolic syndrome. However, the mechanisms by which social isolation affects metabolic syndrome are not well understood. RESEARCH DESIGN AND METHODS: This study was designed as a cross-sectional study of baseline results from the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) Cohort. We included 10 103 participants (8097 community-based low-risk participants, 2006 hospital-based high-risk participants) from the CMERC Cohort. Participants aged 65 years or older were excluded. Multiple imputation by chained equations was applied to impute missing variables. The quantitative properties of social networks were assessed by measuring the 'size of social networks'; qualitative properties were assessed by measuring the 'social network closeness'. Metabolic syndrome was defined based on the National Cholesterol Education Program Adult Treatment Panel III criteria. Multivariate logistic regression analyses were conducted to assess association between social network properties and metabolic syndrome. The mediating effects of physical inactiveness, alcohol consumption, cigarette smoking and depressive symptoms were estimated. Age-specific effect sizes were estimated for each subgroup. RESULTS: A smaller social network was positively associated with higher prevalences of metabolic syndrome in all subgroups, except the high-risk male subgroup. There was no clear association between social network closeness and metabolic syndrome. In community-based participants, an indirect effect through physical activity was detected in both sexes; however, in hospital-based participants, no indirect effects were detected. Cigarette smoking, alcohol consumption and depression did not mediate the association. Age-specific estimates showed that the indirect effect through physical activity had a greater impact in older participants. CONCLUSIONS: A smaller social network is positively associated with metabolic syndrome. This trend could be partially explained by physical inactivity, especially in older individuals
A Path to Better Sleep and Circadian Health: Optimizing and Personalizing Indoor Lighting
Circadian rhythms play a crucial role in the regulation of sleep, metabolism, and cognitive function. However, they are highly sensitive to disturbances caused by irregular indoor lighting, especially exposure to blue light at night. This review explored the impact of indoor lighting on circadian and sleep health by analyzing trends in light exposure, socioeconomic disparities, and the prioritization of economic efficiency over health in modern lighting design. Significant variations in individual circadian rhythms present a challenge in creating standardized lighting environments. To address this issue, a review suggested the development of personalized lighting systems that use advanced sensors to monitor and respond to the circadian phase of each individual. By dynamically adjusting light intensity, wavelength, and timing, these systems can better align with personal biological clocks, promote optimal sleep and overall health, and advance the concept of truly human-centric lighting environments
The Impact of Real-Time Documentation of In-Hospital Medication Changes on Preventing Undocumented Discrepancies at Discharge and Improving Physician-Pharmacist Communication: A Retrospective Cohort Study and Survey
Woo-Youn Kim,1,2 Anna Baek,1 Yoonhee Kim,1 Yewon Suh,1,2 Eunsook Lee,1 Eunkyung Euni Lee,1,2 Ju-Yeun Lee,1,2 Jongchan Lee,3– 5 Hee Sun Park,3– 5 Eun Sun Kim,3– 5 Yejee Lim,3– 5 Nak-Hyun Kim,3– 5 Jung Hun Ohn,3– 5 Sun-wook Kim,3– 5 Jiwon Ryu,3– 5 Hye Won Kim3– 5 1Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, South Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea; 3Division of General Internal Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; 4Hospital Medicine Center, Seoul National University Bundang Hospital, Seongnam, South Korea; 5Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South KoreaCorrespondence: Hye Won Kim, Email [email protected]: Transitional medication safety is crucial, as miscommunication about medication changes can lead to significant risks. Unclear or incomplete documentation during care transitions can result in outdated or incorrect medication lists at discharge, potentially causing medication errors, adverse drug events, and inadequate patient education. These issues are exacerbated by extended hospital stays and multiple care events, making accurate medication recall challenging at discharge.Objective: Thus, we aimed to investigate how real-time documentation of in-hospital medication changes prevents undocumented medication changes at discharge and improves physician-pharmacist communication.Methods: We conducted a retrospective cohort study in a tertiary hospital. Two pharmacists reviewed medical records of patients admitted to the acute medical unit from April to June 2020. In-hospital medication discrepancies were determined by comparing preadmission and hospitalization medication lists and it was verified whether the physician’s intent of medication changes was clarified by documentation. By a documentation rate of medication changes of 100% and < 100%, respectively, fully documented (FD) and partially documented (PD) groups were defined. Any undocumented medication changes at discharge were considered a “documentation error at discharge”. Pharmacists’ survey was conducted to assess the impact of appropriate documentation on the pharmacists.Results: After reviewing 400 medication records, patients were categorized into FD (61.3%) and PD (38.8%) groups. Documentation errors at discharge were significantly higher in the PD than in the FD group. Factors associated with documentation errors at discharge included belonging to the PD group, discharge from a non-hospitalist-managed ward, and having three or more intentional discrepancies. Pharmacists showed favorable attitudes towards physician’s documentation.Conclusion: Appropriate documentation of in-hospital medication changes, facilitated by free-text communication, significantly decreased documentation errors at discharge. This analysis underlines the importance of communication between pharmacists and hospitalists in improving patient safety during transitions of care.Plain language summary: During transitions of care, communication failures among healthcare professionals can lead to medication errors. Therefore, effective sharing of information is essential, especially when intentional changes in prescription orders are made. Documenting medication changes facilitates real-time communication, potentially improving medication reconciliation and reducing discrepancies. However, inadequate documentation of medication changes is common in clinical practice. This retrospective cohort study underlines the importance of real-time documentation of in-hospital medication changes. There was a significant reduction in documentation errors at discharge in fully documented group, where real-time documentation of medication changes was more prevalent. Pharmacists showed favorable attitudes toward the physician’s real-time documenting of medication changes because it provided valuable information on understanding the physician’s intent and improving communication and also saved time for pharmacists. This study concludes that physicians’ documentation on medication changes may reduce documentation errors at discharge, meaning that proper documentation of medication changes could enhance patient safety through effective communication.Keywords: medication reconciliation, medication safety, transitions in care, hospital information systems, hospital discharge, quality audi
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats
<p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p>Methods</p> <p>The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).</p> <p>Results</p> <p>In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.</p> <p>Conclusions</p> <p>This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.</p
MicroRNA profiling in ischemic injury of the gracilis muscle in rats
<p>Abstract</p> <p>Background</p> <p>To profile the expression of microRNAs (miRNAs) and their potential target genes in the gracilis muscles following ischemic injury in rats by monitoring miRNA and mRNA expression on a genome-wide basis.</p> <p>Methods</p> <p>Following 4 h of ischemia and subsequent reperfusion for 4 h of the gracilis muscles, the specimens were analyzed with an Agilent rat miRNA array to detect the expressed miRNAs in the experimental muscles compared to those from the sham-operated controls. Their expressions were subsequently quantified by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to determine their expression pattern after different durations of ischemia and reperfusion. In addition, the expression of the mRNA in the muscle specimens after 4 h of ischemia and reperfusion for 1, 3, 7, and 14 d were detected with the Agilent Whole Rat Genome 4 × 44 k oligo microarray. A combined approach using a computational prediction algorithm that included miRanda, PicTar, TargetScanS, MirTarget2, RNAhybrid, and the whole genome microarray experiment was performed by monitoring the mRNA:miRNA association to identify potential target genes.</p> <p>Results</p> <p>Three miRNAs (miR-21, miR-200c, and miR-205) of 350 tested rat miRNAs were found to have an increased expression in the miRNA array. Real-time RT-PCR demonstrated that, with 2-fold increase after 4 h of ischemia, a maximum 24-fold increase at 7 d, and a 7.5-fold increase at 14 d after reperfusion, only the miR-21, but not the miR-200c or miR-205 was upregulated throughout the experimental time. In monitoring the target genes of miR-21 in the expression array at 1, 3, 7, 14 d after reperfusion, with persistent expression throughout the experiment, we detected the same 4 persistently downregulated target genes (<it>Nqo1</it>, <it>Pdpn</it>, <it>CXCL3</it>, and <it>Rad23b</it>) with the prediction algorithms miRanda and RNAhybrid, but no target gene was revealed with PicTar, TargetScanS, and MirTarget2.</p> <p>Conclusions</p> <p>This study revealed 3 upregulated miRNAs in the gracilis muscle following ischemic injury and identified 4 potential target genes of miR-21 by examining miRNAs and mRNAs expression patterns in a time-course fashion using a combined approach with prediction algorithms and a whole genome expression array experiment.</p
- …
