709 research outputs found

    Microsatellite typing of avian clinical and environmental isolates of Aspergillus fumigatus

    Get PDF
    Aspergillosis is one of the most common causes of death in captive birds. Aspergillosis in birds is mainly caused by Aspergillus fumigatus, a ubiquitous and opportunistic saprophyte. Currently it is not known whether there is a link between the environmental isolates and/or human isolates of A. fumigatus and those responsible for aspergillosis in birds. Microsatellite typing was used to analyse 65 clinical avian isolates and 23 environmental isolates of A. fumigatus. The 78 genotypes that were obtained were compared with a database containing genotypes of 2514 isolates from human clinical samples and from the environment. There appeared to be no specific association between the observed genotypes and the origin of the isolates (environment, human or bird). Eight genotypes obtained from isolates of diseased birds were also found in human clinical samples. These results indicate that avian isolates of A. fumigatus may cause infection in humans

    Cellular and Molecular Mechanisms of Chronic Inflammation-Associated Organ Fibrosis

    Get PDF
    Organ fibrosis is a pathological condition associated with chronic inflammatory diseases. In fibrosis, excessive deposition of extracellular matrix (ECM) severely impairs tissue architecture and function, eventually resulting in organ failure. This process is mediated primarily by the induction of myofibroblasts, which produce large amounts of collagen I, the main component of the ECM. Accordingly, the origin, developmental pathways, and mechanisms of myofibroblast regulation are attracting increasing attention as potential therapeutic targets. The fibrotic cascade, from initial epithelial damage to eventual myofibroblast induction, is mediated by complex biological processes such as macrophage infiltration, a shift from Th1 to Th2 phenotype, and by inflammatory mediators such as transforming growth factor-β. Here, we review the current understanding of the cellular and molecular mechanisms underlying organ fibrosis

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation

    Get PDF
    We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain

    Systems and technologies for objective evaluation of technical skills in laparoscopic surgery

    Get PDF
    Minimally invasive surgery is a highly demanding surgical approach regarding technical requirements for the surgeon, who must be trained in order to perform a safe surgical intervention. Traditional surgical education in minimally invasive surgery is commonly based on subjective criteria to quantify and evaluate surgical abilities, which could be potentially unsafe for the patient. Authors, surgeons and associations are increasingly demanding the development of more objective assessment tools that can accredit surgeons as technically competent. This paper describes the state of the art in objective assessment methods of surgical skills. It gives an overview on assessment systems based on structured checklists and rating scales, surgical simulators, and instrument motion analysis. As a future work, an objective and automatic assessment method of surgical skills should be standardized as a means towards proficiency-based curricula for training in laparoscopic surgery and its certification

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Neuroscience and education: prime time to build the bridge

    Get PDF
    As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge’s cement is still fresh, we argue why it is prime time to march over it
    corecore