44 research outputs found

    Oromucosal films: from patient centricity to production by printing techniques

    Get PDF
    INTRODUCTION: Oromucosal films, comprising mucoadhesive buccal films (MBFs) and orodispersible films (ODFs), are considered patient-centric dosage forms. Target groups are patients with special needs. Various active pharmaceutical ingredients have been shown to be suitable for oromucosal film production. A shift is seen in the production techniques, from conventional solvent casting to printing techniques. AREAS COVERED: In this review, the patient acceptability of oromucosal films is discussed. An overview is given of the small molecule drugs, biopharmaceuticals and herbal extracts that have been incorporated so far. Finally, the current state of 2D and 3D printing techniques for production purposes is discussed. EXPERT OPINION: The patient-centric features are important for the further development and acceptance of this oral solid dosage form. Oromucosal films perfectly fit in the current attention for personalized medicine. Both MBFs and ODFs are intended for either a local or a systemic effect. For buccal absorption, sufficient mucoadhesion is one of the most important criteria an oromucosal film must comply with. For the preparation, the solvent casting technique is still predominately used. Some limitations of this production method can be tackled by printing techniques. However, these novel techniques introduce new requirements, yet to be set, for oromucosal film preparation

    Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Get PDF
    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug

    DETERMINATION OF CYCLODEXTRINS IN BIOLOGICAL-FLUIDS BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY WITH NEGATIVE COLORIMETRIC DETECTION USING POSTCOLUMN COMPLEXATION WITH PHENOLPHTHALEIN

    No full text
    A rapid and sensitive high-performance liquid chromatographic method for the analysis of beta- and gamma-cyclodextrin in aqueous biological fluids such as plasma, urine, or tissue homogenate is described. The chromatographic system consists of a microBondapak Phenyl column as stationary phase and a mobile phase of water with 10% methanol. After post-column addition of an alkaline solution of phenolphthalein, negative colorimetric detection is used. The elution solvent and post-column reagent were mixed in a capillary tubing of 1.5 m (1.0 mm I.D.). Two methods of sample treatment are given, one for large (1.0 ml) and one for small (0.1 ml) sample volumes. Both methods were shown to be linear and reproducible. The detection limit for beta-cyclodextrin was 1.0 microgram/ml (0.77 nmol/ml). The method was used in the determination of some pharmacokinetic parameters of beta-cyclodextrin in rats after intravenous injection

    Personalized Medicine in Pediatrics: The Clinical Potential of Orodispersible Films

    Get PDF
    corecore