1,305 research outputs found
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews
Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases
Theories for influencer identification in complex networks
In social and biological systems, the structural heterogeneity of interaction
networks gives rise to the emergence of a small set of influential nodes, or
influencers, in a series of dynamical processes. Although much smaller than the
entire network, these influencers were observed to be able to shape the
collective dynamics of large populations in different contexts. As such, the
successful identification of influencers should have profound implications in
various real-world spreading dynamics such as viral marketing, epidemic
outbreaks and cascading failure. In this chapter, we first summarize the
centrality-based approach in finding single influencers in complex networks,
and then discuss the more complicated problem of locating multiple influencers
from a collective point of view. Progress rooted in collective influence
theory, belief-propagation and computer science will be presented. Finally, we
present some applications of influencer identification in diverse real-world
systems, including online social platforms, scientific publication, brain
networks and socioeconomic systems.Comment: 24 pages, 6 figure
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
The association between retinal vascular geometry changes and diabetic retinopathy and their role in prediction of progression: an exploratory study
Background: The study describes the relationship of retinal vascular geometry (RVG) to severity of diabetic retinopathy (DR), and its predictive role for subsequent development of proliferative diabetic retinopathy (PDR). Methods. The research project comprises of two stages. Firstly, a comparative study of diabetic patients with different grades of DR. (No DR: Minimal non-proliferative DR: Severe non-proliferative DR: PDR) (10:10: 12: 19). Analysed RVG features including vascular widths and branching angles were compared between patient cohorts. A preliminary statistical model for determination of the retinopathy grade of patients, using these features, is presented. Secondly, in a longitudinal predictive study, RVG features were analysed for diabetic patients with progressive DR over 7 years. RVG at baseline was examined to determine risk for subsequent PDR development. Results: In the comparative study, increased DR severity was associated with gradual vascular dilatation (p = 0.000), and widening of the bifurcating angle (p = 0.000) with increase in smaller-child-vessel branching angle (p = 0.027). Type 2 diabetes and increased diabetes duration were associated with increased vascular width (p = <0.05 In the predictive study, at baseline, reduced small-child vascular width (OR = 0.73 (95 CI 0.58-0.92)), was predictive of future progression to PDR. Conclusions: The study findings suggest that RVG alterations can act as novel markers indicative of progression of DR severity and establishment of PDR. RVG may also have a potential predictive role in determining the risk of future retinopathy progression. © 2014 Habib et al.; licensee BioMed Central Ltd
Scenario-Based Design Theorizing:The Case of a Digital Idea Screening Cockpit
As ever more companies encourage employees to innovate, a surplus of ideas has become reality in many organizations – often exceeding the available resources to execute them. Building on insights from a literature review and a 3-year collaboration with a banking software provider, the paper suggests a Digital Idea Screening Cockpit (DISC) to address this challenge. Following a design science research approach, it suggests a prescriptive design theory that provides practitioner-oriented guidance for implementing a DISC. The study shows that, in order to facilitate the assessment, selection, and tracking of ideas for different stakeholders, such a system needs to play a dual role: It needs to structure decision criteria and at the same be flexible to allow for creative expression. Moreover, the paper makes a case for scenario-based design theorizing by developing design knowledge via scenarios
Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response
IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development
Measurement of the Production Cross Section and Search for Anomalous and Couplings in Collisions at TeV
This Letter describes the current most precise measurement of the boson
pair production cross section and most sensitive test of anomalous
and couplings in collisions at a center-of-mass energy of 1.96
TeV. The candidates are reconstructed from decays containing two charged
leptons and two neutrinos, where the charged leptons are either electrons or
muons. Using data collected by the CDF II detector from 3.6 fb of
integrated luminosity, a total of 654 candidate events are observed with an
expected background contribution of events. The measured total
cross section is pb, which is in good agreement
with the standard model prediction. The same data sample is used to place
constraints on anomalous and couplings.Comment: submitted to Phys. Rev. Let
Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized \u3cem\u3eListeria monocytogenes\u3c/em\u3e
Inbred mouse strains differ in their susceptibility to infection with the facultative intracellular bacterium Listeria monocytogenes, largely due to delayed or deficient innate immune responses. Previous antibody depletion studies suggested that neutrophils (polymorphonuclear leukocytes [PMN]) were particularly important for clearance in the liver, but the ability of PMN from susceptible and resistant mice to directly kill L. monocytogenes has not been examined. In this study, we showed that PMN infiltrated the livers of BALB/c/By/J (BALB/c) and C57BL/6 (B6) mice in similar numbers and that both cell types readily migrated toward leukotriene B4 in an in vitro chemotaxis assay. However, CFU burdens in the liver were significantly higher in BALB/c mice than in other strains, suggesting that PMN in the BALB/c liver might not be able to clear L. monocytogenes as efficiently as B6 PMN. Unprimed PMN harvested from either BALB/c or B6 bone marrow killed L. monocytogenes directly ex vivo, and pretreatment with autologous serum significantly enhanced killing efficiency for both. L. monocytogenes were internalized within 10 min and rapidly triggered intracellular production of reactive oxygen species in a dose-dependent manner. However, PMN from gp91phox-deficient mice also readily killed L. monocytogenes, which suggested that nonoxidative killing mechanisms may be sufficient for bacterial clearance. Together, these results indicate that there is not an intrinsic defect in the ability of PMN from susceptible BALB/c mice to kill L. monocytogenes and further suggest that if PMN function is impaired in BALB/c mice, it is likely due to locally produced modulating factors present in the liver during infection
- …
