4,184 research outputs found
Realizability of the Lorentzian (n,1)-Simplex
In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have
developed a Lorentzian version of the Quantum Regge Calculus in which the
significant differences between simplices in Lorentzian signature and Euclidean
signature are crucial. In this article we extend a central result used in the
previous article, regarding the realizability of Lorentzian triangles, to
arbitrary dimension. This technical step will be crucial for developing the
Lorentzian model in the case of most physical interest: 3+1 dimensions.
We first state (and derive in an appendix) the realizability conditions on
the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is
the number of space-like dimensions. We then show that in any dimension there
is a certain type of simplex which has all of its time-like edge lengths
completely unconstrained by any sort of triangle inequality. This result is the
d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian
triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to
Introduction and Discussion sections. 1 reference updated. This version
accepted for publication in JHEP. V3: minor updates and clarifications, this
version closely corresponds to the version published in JHE
Discrete approaches to quantum gravity in four dimensions
The construction of a consistent theory of quantum gravity is a problem in
theoretical physics that has so far defied all attempts at resolution. One
ansatz to try to obtain a non-trivial quantum theory proceeds via a
discretization of space-time and the Einstein action. I review here three major
areas of research: gauge-theoretic approaches, both in a path-integral and a
Hamiltonian formulation, quantum Regge calculus, and the method of dynamical
triangulations, confining attention to work that is strictly four-dimensional,
strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the
author welcomes any comments and suggestion
Evolution of Nanoporosity in Dealloying
Dealloying is a common corrosion process during which an alloy is "parted" by
the selective dissolution of the electrochemically more active elements. This
process results in the formation of a nanoporous sponge composed almost
entirely of the more noble alloy constituents . Even though this morphology
evolution problem has attracted considerable attention, the physics responsible
for porosity evolution have remained a mystery . Here we show by experiment,
lattice computer simulation, and a continuum model, that nanoporosity is due to
an intrinsic dynamical pattern formation process - pores form because the more
noble atoms are chemically driven to aggregate into two-dimensional clusters
via a spinodal decomposition process at the solid-electrolyte interface. At the
same time, the surface area continuously increases due to etching. Together,
these processes evolve a characteristic length scale predicted by our continuum
model. The applications potential of nanoporous metals is enormous. For
instance, the high surface area of nanoporous gold made by dealloying Ag-Au can
be chemically tailored, making it suitable for sensor applications,
particularly in biomaterials contexts.Comment: 13 pages, PDF, incl. 4 figures. avi movies of simulations available
at http://www.deas.harvard.edu/matsci/downdata/downdata.htm
Integrating microalgae production with anaerobic digestion: a biorefinery approach
This is the peer reviewed version of the following article: [Uggetti, E. , Sialve, B. , Trably, E. and Steyer, J. (2014), Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Bioref, 8: 516-529. doi:10.1002/bbb.1469], which has been published in final form at https://doi.org/10.1002/bbb.1469. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingIn the energy and chemical sectors, alternative production chains should be considered in order to simultaneously reduce the dependence on oil and mitigate climate change. Biomass is probably the only viable alternative to fossil resources for production of liquid transportation fuels and chemicals since, besides fossils, it is one of the only available sources of carbon-rich material on Earth. Over recent years, interest in microalgae biomass has grown in both fundamental and applied research fields. The biorefinery concept includes different technologies able to convert biomass into added-value chemicals, products (food and feed) and biofuels (biodiesel, bioethanol, biohydrogen). As in oil refinery, a biorefinery aims at producing multiple products, maximizing the value derived from differences in biomass components, including microalgae. This paper provides an overview of the various microalgae-derived products, focusing on anaerobic digestion for conversion of microalgal biomass into methane. Special attention is paid to the range of possible inputs for anaerobic digestion (microalgal biomass and microalgal residue after lipid extraction) and the outputs resulting from the process (e.g. biogas and digestate). The strong interest in microalgae anaerobic digestion lies in its ability to mineralize microalgae containing organic nitrogen and phosphorus, resulting in a flux of ammonium and phosphate that can then be used as substrate for growing microalgae or that can be further processed to produce fertilizers. At present, anaerobic digestion outputs can provide nutrients, CO2 and water to cultivate microalgae, which in turn, are used as substrate for methane and fertilizer generation.Peer ReviewedPostprint (author's final draft
Amblyopia and quality of life: a systematic review
Background/Aims
Amblyopia is a common condition which can affect up to 5% of the general population. The health-related quality of life (HRQoL) implications of amblyopia and/or its treatment have been explored in the literature.
Methods
A systematic literature search was undertaken (16th-30th January 2007) to identify the HRQoL implications of amblyopia and/or its treatment.
Results
A total of 25 papers were included in the literature review. The HRQoL implications of amblyopia related specifically to amblyopia treatment, rather than the condition itself. These included the impact upon family life; social interactions; difficulties undertaking daily activities; and feelings and behaviour. The identified studies adopted a number of methodologies. The study populations included; children with the condition; parents of children with amblyopia; and adults who had undertaken amblyopia treatment as a child. Some studies developed their own measures of HRQoL, and others determined HRQoL through proxy measures.
Conclusions
The reported findings of the HRQoL implications are of importance when considering the management of cases of amblyopia. Further research is required to assess the immediate and long-term effects of amblyopia and/or its treatment upon HRQoL using a more standardised approach
Wigner Crystallization in a Quasi-3D Electronic System
When a strong magnetic field is applied perpendicularly (along z) to a sheet
confining electrons to two dimensions (x-y), highly correlated states emerge as
a result of the interplay between electron-electron interactions, confinement
and disorder. These so-called fractional quantum Hall (FQH) liquids form a
series of states which ultimately give way to a periodic electron solid that
crystallizes at high magnetic fields. This quantum phase of electrons has been
identified previously as a disorder-pinned two-dimensional Wigner crystal with
broken translational symmetry in the x-y plane. Here, we report our discovery
of a new insulating quantum phase of electrons when a very high magnetic field,
up to 45T, is applied in a geometry parallel (y-direction) to the
two-dimensional electron sheet. Our data point towards this new quantum phase
being an electron solid in a "quasi-3D" configuration induced by orbital
coupling with the parallel field
Ethanol reversal of tolerance to the respiratory depressant effects of morphine
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths
Bubbles and jackets: new scaling bounds in topological group field theories
We use a reformulation of topological group field theories in 3 and 4
dimensions in terms of variables associated to vertices, in 3d, and edges, in
4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4
dimensions, we obtain a bubble bound proving the suppression of singular
topologies with respect to the first terms in the perturbative expansion (in
the cut-off). We also prove a new, stronger jacket bound than the one currently
available in the literature. We expect these results to be relevant for other
tensorial field theories of this type, as well as for group field theory models
for 4d quantum gravity.Comment: v2: Minor modifications to match published versio
Reproducibility of CSF quantitative culture methods for estimating rate of clearance in cryptococcal meningitis.
Quantitative cerebrospinal fluid (CSF) cultures provide a measure of disease severity in cryptococcal meningitis. The fungal clearance rate by quantitative cultures has become a primary endpoint for phase II clinical trials. This study determined the inter-assay accuracy of three different quantitative culture methodologies. Among 91 participants with meningitis symptoms in Kampala, Uganda, during August-November 2013, 305 CSF samples were prospectively collected from patients at multiple time points during treatment. Samples were simultaneously cultured by three methods: (1) St. George's 100 mcl input volume of CSF with five 1:10 serial dilutions, (2) AIDS Clinical Trials Group (ACTG) method using 1000, 100, 10 mcl input volumes, and two 1:100 dilutions with 100 and 10 mcl input volume per dilution on seven agar plates; and (3) 10 mcl calibrated loop of undiluted and 1:100 diluted CSF (loop). Quantitative culture values did not statistically differ between St. George-ACTG methods (P= .09) but did for St. George-10 mcl loop (P< .001). Repeated measures pairwise correlation between any of the methods was high (r≥0.88). For detecting sterility, the ACTG-method had the highest negative predictive value of 97% (91% St. George, 60% loop), but the ACTG-method had occasional (∼10%) difficulties in quantification due to colony clumping. For CSF clearance rate, St. George-ACTG methods did not differ overall (mean -0.05 ± 0.07 log10CFU/ml/day;P= .14) on a group level; however, individual-level clearance varied. The St. George and ACTG quantitative CSF culture methods produced comparable but not identical results. Quantitative cultures can inform treatment management strategies
Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines
- …
