88 research outputs found
Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1
To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols
The role of the complement system in traumatic brain injury: a review
Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed
Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.)
Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia
The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure
Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat
Laplacian Electrograms and the Interpretation of Complex Ventricular Activation Patterns During Ventricular Fibrillation
Development of a land-use forecast tool for future water resources assessment: case study for the Mekong River 3S Sub-basins
Characteristics of extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae isolated from rivers and lakes in Switzerland
One of the currently most relevant resistance mechanisms in Enterobacteriaceae is the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae and to further characterize ESBL- and carbapenemase-producing Enterobacteriaceae in rivers and lakes in Switzerland. ESBL-producing Enterobacteriaceae were detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producing Klebsiella pneumoniae subsp. pneumoniae strain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60 Escherichia coli strains, seven Klebsiella pneumoniae subsp. pneumoniae strains, five Raoultella planticola strains, one Enterobacter cloacae strain, and one Enterobacter amnigenus strain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence type E. coli B2:ST131 that is strongly associated with potentially severe infections in humans and animals
- …
