11,790 research outputs found

    Continuous time-varying biasing approach for spectrally tunable infrared detectors

    Get PDF
    In a recently demonstrated algorithmic spectral-tuning technique by Jang et al. [Opt. Express 19, 19454-19472, (2011)], the reconstruction of an object’s emissivity at an arbitrarily specified spectral window of interest in the long-wave infrared region was achieved. The technique relied upon forming a weighted superposition of a series of photocurrents from a quantum dots-in-a-well (DWELL) photodetector operated at discrete static biases that were applied serially. Here, the technique is generalized such that a continuously varying biasing voltage is employed over an extended acquisition time, in place using a series of fixed biases over each sub-acquisition time, which totally eliminates the need for the post-processing step comprising the weighted superposition of the discrete photocurrents. To enable this capability, an algorithm is developed for designing the time-varying bias for an arbitrary spectral-sensing window of interest. Since continuous-time biasing can be implemented within the readout circuit of a focal-plane array, this generalization would pave the way for the implementation of the algorithmic spectral tuning in focal-plane arrays within in each frame time without the need for on-sensor multiplications and additions. The technique is validated by means of simulations in the context of spectrometry and object classification while using experimental data for the DWELL under realistic signal-to-noise ratios

    Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson's disease and depression.

    Get PDF
    Small molecules that increase the presynaptic function of aminergic cells may provide neuroprotection in Parkinson's disease (PD) as well as treatments for attention deficit hyperactivity disorder (ADHD) and depression. Model genetic organisms such as Drosophila melanogaster may enhance the detection of new drugs via modifier or 'enhancer/suppressor' screens, but this technique has not been applied to processes relevant to psychiatry. To identify new aminergic drugs in vivo, we used a mutation in the Drosophila vesicular monoamine transporter (dVMAT) as a sensitized genetic background and performed a suppressor screen. We fed dVMAT mutant larvae ∼ 1000 known drugs and quantitated rescue (suppression) of an amine-dependent locomotor deficit in the larva. To determine which drugs might specifically potentiate neurotransmitter release, we performed an additional secondary screen for drugs that require presynaptic amine storage to rescue larval locomotion. Using additional larval locomotion and adult fertility assays, we validated that at least one compound previously used clinically as an antineoplastic agent potentiates the presynaptic function of aminergic circuits. We suggest that structurally similar agents might be used to development treatments for PD, depression and ADHD, and that modifier screens in Drosophila provide a new strategy to screen for neuropsychiatric drugs. More generally, our findings demonstrate the power of physiologically based screens for identifying bioactive agents for select neurotransmitter systems

    Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Get PDF
    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.open11349353sciescopu

    Quantum-mechanical analysis of effect of alloying elements on ε-martensite start temperature of steels

    Get PDF
    11Ysciescopu

    Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches

    Get PDF
    In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situ measurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.ope

    GABA(A) receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein

    Get PDF
    GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1(-/-) mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors containing beta3 subunits by cAMP-dependent protein kinase was evident, which was diminished in PRIP-1(-/-) mice. PRIP-1(-/-) mice exhibited enhanced PP1alpha activity compared with controls. Furthermore, PRIP-1 was able to interact directly with GABA(A) receptor beta subunits, and moreover, these proteins were found to be PP1alpha substrates. Finally, phosphorylation of PRIP-1 on threonine 94 facilitated the dissociation of PP1alpha-PRIP-1 complexes, providing a local mechanism for the activation of PP1alpha. Together, these results suggest an essential role for PRIP-1 in controlling GABA(A) receptor activity via regulating subunit phosphorylation and thereby the efficacy of neuronal inhibition mediated by these receptors

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K, and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure
    corecore