2,182 research outputs found

    Expedition to the volcanoes of the Arctic seafloor : the AMORE Expedition headed for the so-called “Gakkel Ridge” where, on the floor of the Arctic Ocean, there is hot work afoot – for this ocean ridge is composed of active volcanoes

    Get PDF
    Beginning: When Jules Verne made his imaginary journey of exploration to the centre of the earth through the vents in an Icelandic volcano over a hundred years ago, he assumed that all volcanoes are interlinked in a subterranean system. But even his imagination failed to visualise the world-wide system of submarine volcanoes that extends over a distance of over 60,000 kilometres and only breaks the surface of the ocean at Iceland. This mid-oceanic ridge, which spans the entire world ocean, has evolved along the boundaries between the tectonic plates of the Earth’s crust. Gakkel Ridge, in the central eastern Arctic Ocean is the northern most spur of the plate boundary between Eurasia and North America, and at the same time the most slowly opening ridge segment in the world, opening only a few millimetres each year

    How Deep Is Deep enough for RNA-Seq Profiling of Bacterial Transcriptomes?

    Get PDF
    Background: High-throughput sequencing of cDNA libraries (RNA-Seq) has proven to be a highly effective approach for studying bacterial transcriptomes. A central challenge in designing RNA-Seq-based experiments is estimating a priori the number of reads per sample needed to detect and quantify thousands of individual transcripts with a large dynamic range of abundance. Results: We have conducted a systematic examination of how changes in the number of RNA-Seq reads per sample influences both profiling of a single bacterial transcriptome and the comparison of gene expression among samples. Our findings suggest that the number of reads typically produced in a single lane of the Illumina HiSeq sequencer far exceeds the number needed to saturate the annotated transcriptomes of diverse bacteria growing in monoculture. Moreover, as sequencing depth increases, so too does the detection of cDNAs that likely correspond to spurious transcripts or genomic DNA contamination. Finally, even when dozens of barcoded individual cDNA libraries are sequenced in a single lane, the vast majority of transcripts in each sample can be detected and numerous genes differentially expressed between samples can be identified. Conclusions: Our analysis provides a guide for the many researchers seeking to determine the appropriate sequencing depth for RNA-Seq-based studies of diverse bacterial species

    The K2 Mission: Characterization and Early results

    Full text link
    The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hour photometric precision of 80 ppm (both at V=12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75-days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.Comment: 25 pages, 11 figures, Accepted to PAS

    Experimental demonstration of generalised space shift keying for visible light communication

    Get PDF
    A low complexity generalised space shift keying (GSSK) experimental set-up for visible light communication (VLC) is demonstrated. The GSSK encoder is implemented in a field programmable gate array (FPGA) board. No digitalto-analog converter (DAC) is required and up to 16 output channels are supported which greatly exceeds that of an arbitrary waveform generator (AWG). A 4 × 4 Gallium Nitride (GaN) micro-LED array is used as transmitter while 4 avalanche photo diode (APD) receiver boards are acting as receivers. GSSK exploits the natural differences between the multiple communication links. The bit error ratio (BER) performances are evaluated for different transmitter and receiver arrangements. It is also shown that how different receiver positions and increasing receiver number will affect the BER performance. The bit error performance greatly depends on the dissimilarity of the channel gains. A spectral efficiency of 16 bits/symbol is achieved by using all 16 micro-LEDs and 4 receivers. The implementation of the experiment is introduced in detail and experimental results are given

    The Impact of Solar Irradiance on Visible Light Communications

    Get PDF
    This paper aims to address the perception that visible light communication (VLC) systems cannot work under the presence of sunlight. A complete framework is presented to evaluate the performance of VLC systems in the presence of solar irradiance at any given location and time. The effect of solar irradiance is investigated in terms of degradations in signal to noise ratio, data rate, and bit error rate. Direct current (DC) optical orthogonal frequency division multiplexing is used with adaptive bit and energy loading to mitigate DC wander interference and low-frequency ambient light noise. It was found that reliable communication can be achieved under the effect of solar irradiance at high-speed data rates. An optical bandpass blue filter is shown to compensate for half of the reduced data rate in the presence of sunlight. This work demonstrates data rates above 1 Gb/s of a VLC link under strong solar illuminance measured at 50350 lux in clear weather conditions

    Spatially superposed pulse amplitude modulation using a chip-scale CMOS-integrated GaN LED array

    Get PDF
    We present a highly compact system capable of generating discrete optical wireless data signals from logic inputs, suitable for pulse amplitude modulation (PAM) transmission, in visible light communication (VLC)

    CMOS-integrated GaN LED array for discrete power level stepping in visible light communications

    Get PDF
    We report a CMOS integrated micro-LED array capable of generating discrete optical output power levels. A 16 x 16 array of individually addressable pixels are on-off controlled through parallel logic signals. With carefully selected groups of LEDs driven together, signals suitable for discrete transmission schemes are produced. The linearity of the device is assessed, and data transmission using pulse amplitude modulation (PAM) and orthogonal frequency division multiplexing (OFDM) is performed. Error-free transmission at a symbol rate of 100 MSamples/s is demonstrated with 4-PAM, yielding a data rate of 200 Mb/s. For 8-PAM, encoding is required to overcome the baseline wander from the receiver, reducing the data rate to 150 Mb/s. We also present an experimental proof-of-concept demonstration of discrete-level OFDM, achieving a spectral efficiency of 3.96 bits/s/Hz

    Crucible of Andean Civilization: The Peruvian Coast from 3000 to 1800 B.C.

    Get PDF
    The focus of the development of the first complex, centralized societies on the coast of Peru between 3000 and 1800 BC was a portion of the coast known as the Norte Chico, where more than 30 large Late Archaic sites with monumental platform mounds, ceremonial plazas, and residential architecture have now been identified. Differing theories have been offered to explain the emergence of complex polities in this region. New settlement and radiocarbon data suggest an alternative theoretical model that posits a regional sphere of interaction with a dominant political nexus in the Norte Chico region and participation by maritime fishing communities up and down the coast

    Adaptive Mesh Refinement for Characteristic Grids

    Full text link
    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both 2nd and 4th order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.Comment: 37 pages, 15 figures (40 eps figure files, 8 of them color; all are viewable ok in black-and-white), 1 mpeg movie, uses Springer-Verlag svjour3 document class, includes C++ source code. Changes from v1: revised in response to referee comments: many references added, new figure added to better explain the algorithm, other small changes, C++ code updated to latest versio
    corecore