386 research outputs found
Reduced basis methods for pricing options with the Black-Scholes and Heston model
In this paper, we present a reduced basis method for pricing European and
American options based on the Black-Scholes and Heston model. To tackle each
model numerically, we formulate the problem in terms of a time dependent
variational equality or inequality. We apply a suitable reduced basis approach
for both types of options. The characteristic ingredients used in the method
are a combined POD-Greedy and Angle-Greedy procedure for the construction of
the primal and dual reduced spaces. Analytically, we prove the reproduction
property of the reduced scheme and derive a posteriori error estimators.
Numerical examples are provided, illustrating the approximation quality and
convergence of our approach for the different option pricing models. Also, we
investigate the reliability and effectivity of the error estimators.Comment: 25 pages, 27 figure
A weighted reduced basis method for parabolic PDEs with random data
This work considers a weighted POD-greedy method to estimate statistical
outputs parabolic PDE problems with parametrized random data. The key idea of
weighted reduced basis methods is to weight the parameter-dependent error
estimate according to a probability measure in the set-up of the reduced space.
The error of stochastic finite element solutions is usually measured in a root
mean square sense regarding their dependence on the stochastic input
parameters. An orthogonal projection of a snapshot set onto a corresponding POD
basis defines an optimum reduced approximation in terms of a Monte Carlo
discretization of the root mean square error. The errors of a weighted
POD-greedy Galerkin solution are compared against an orthogonal projection of
the underlying snapshots onto a POD basis for a numerical example involving
thermal conduction. In particular, it is assessed whether a weighted POD-greedy
solutions is able to come significantly closer to the optimum than a
non-weighted equivalent. Additionally, the performance of a weighted POD-greedy
Galerkin solution is considered with respect to the mean absolute error of an
adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario
A variety of methods is available to quantify uncertainties arising with\-in
the modeling of flow and transport in carbon dioxide storage, but there is a
lack of thorough comparisons. Usually, raw data from such storage sites can
hardly be described by theoretical statistical distributions since only very
limited data is available. Hence, exact information on distribution shapes for
all uncertain parameters is very rare in realistic applications. We discuss and
compare four different methods tested for data-driven uncertainty
quantification based on a benchmark scenario of carbon dioxide storage. In the
benchmark, for which we provide data and code, carbon dioxide is injected into
a saline aquifer modeled by the nonlinear capillarity-free fractional flow
formulation for two incompressible fluid phases, namely carbon dioxide and
brine. To cover different aspects of uncertainty quantification, we incorporate
various sources of uncertainty such as uncertainty of boundary conditions, of
conceptual model definitions and of material properties. We consider recent
versions of the following non-intrusive and intrusive uncertainty
quantification methods: arbitary polynomial chaos, spatially adaptive sparse
grids, kernel-based greedy interpolation and hybrid stochastic Galerkin. The
performance of each approach is demonstrated assessing expectation value and
standard deviation of the carbon dioxide saturation against a reference
statistic based on Monte Carlo sampling. We compare the convergence of all
methods reporting on accuracy with respect to the number of model runs and
resolution. Finally we offer suggestions about the methods' advantages and
disadvantages that can guide the modeler for uncertainty quantification in
carbon dioxide storage and beyond
- …
