624 research outputs found

    Validation and Further Characterization of a Major Quantitative Trait Locus Associated with Host Response to Experimental Infection with Porcine Reproductive and Respiratory Syndrome Virus

    Get PDF
    Infectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of log-transformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic variance for VL and 11 percent for WG. The effect of the favorable minor allele at SNP WUR10000125 was dominant. Ordered genotypes for SNP WUR10000125 showed that the effect was present irrespective of whether the favorable allele was paternally or maternally inherited. These results demonstrate that selection for host response to PRRS virus infection could reduce the economic impact of PRRS

    The value of expanding the training population to improve genomic selection models in tetraploid potato

    Get PDF
    <p>Genomic selection (GS) is becoming increasingly applicable to crops as the genotyping costs continue to decrease, which makes it an attractive alternative to traditional selective breeding based on observed phenotypes. With genome-wide molecular markers, selection based on predictions from genotypes can be made in the absence of direct phenotyping. The reliability of predictions depends strongly on the number of individuals used for training the predictive algorithms, particularly in a highly genetically diverse organism such as potatoes; however, the relationship between the individuals also has an enormous impact on prediction accuracy. Here we have studied genomic prediction in three different panels of potato cultivars, varying in size, design, and phenotypic profile. We have developed genomic prediction models for two important agronomic traits of potato, dry matter content and chipping quality. We used genotyping-by-sequencing to genotype 1,146 individuals and generated genomic prediction models from 167,637 markers to calculate genomic estimated breeding values with genomic best linear unbiased prediction. Cross-validated prediction correlations of 0.75–0.83 and 0.39–0.79 were obtained for dry matter content and chipping quality, respectively, when combining the three populations. These prediction accuracies were similar to those obtained when predicting performance within each panel. In contrast, but not unexpectedly, predictions across populations were generally lower, 0.37–0.71 and 0.28–0.48 for dry matter content and chipping quality, respectively. These predictions are not limited by the number of markers included, since similar prediction accuracies could be obtained when using merely 7,800 markers (<5%). Our results suggest that predictions across breeding populations in tetraploid potato are presently unreliable, but that individual prediction models within populations can be combined in an additive fashion to obtain high quality prediction models relevant for several breeding populations.</p

    The importance of identity-by-state information for the accuracy of genomic selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is commonly assumed that prediction of genome-wide breeding values in genomic selection is achieved by capitalizing on linkage disequilibrium between markers and QTL but also on genetic relationships. Here, we investigated the reliability of predicting genome-wide breeding values based on population-wide linkage disequilibrium information, based on identity-by-descent relationships within the known pedigree, and to what extent linkage disequilibrium information improves predictions based on identity-by-descent genomic relationship information.</p> <p>Methods</p> <p>The study was performed on milk, fat, and protein yield, using genotype data on 35 706 SNP and deregressed proofs of 1086 Italian Brown Swiss bulls. Genome-wide breeding values were predicted using a genomic identity-by-state relationship matrix and a genomic identity-by-descent relationship matrix (averaged over all marker loci). The identity-by-descent matrix was calculated by linkage analysis using one to five generations of pedigree data.</p> <p>Results</p> <p>We showed that genome-wide breeding values prediction based only on identity-by-descent genomic relationships within the known pedigree was as or more reliable than that based on identity-by-state, which implicitly also accounts for genomic relationships that occurred before the known pedigree. Furthermore, combining the two matrices did not improve the prediction compared to using identity-by-descent alone. Including different numbers of generations in the pedigree showed that most of the information in genome-wide breeding values prediction comes from animals with known common ancestors less than four generations back in the pedigree.</p> <p>Conclusions</p> <p>Our results show that, in pedigreed breeding populations, the accuracy of genome-wide breeding values obtained by identity-by-descent relationships was not improved by identity-by-state information. Although, in principle, genomic selection based on identity-by-state does not require pedigree data, it does use the available pedigree structure. Our findings may explain why the prediction equations derived for one breed may not predict accurate genome-wide breeding values when applied to other breeds, since family structures differ among breeds.</p

    Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection

    Get PDF
    <p>Abstract</p> <p>A dataset was simulated and distributed to participants of the QTLMAS XII workshop who were invited to develop genomic selection models. Each contributing group was asked to describe the model development and validation as well as to submit genomic predictions for three generations of individuals, for which they only knew the genotypes. The organisers used these genomic predictions to perform the final validation by comparison to the true breeding values, which were known only to the organisers. Methods used by the 5 groups fell in 3 classes 1) fixed effects models 2) BLUP models, and 3) Bayesian MCMC based models. The Bayesian analyses gave the highest accuracies, followed by the BLUP models, while the fixed effects models generally had low accuracies and large error variance. The best BLUP models as well as the best Bayesian models gave unbiased predictions. The BLUP models are clearly sensitive to the assumed SNP variance, because they do not estimate SNP variance, but take the specified variance as the true variance. The current comparison suggests that Bayesian analyses on haplotypes or SNPs are the most promising approach for Genomic selection although the BLUP models may provide a computationally attractive alternative with little loss of efficiency. On the other hand fixed effect type models are unlikely to provide any gain over traditional pedigree indexes for selection.</p

    Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation studies have shown that accuracy and genetic gain are increased in genomic selection schemes compared to traditional aquaculture sib-based schemes. In genomic selection, accuracy of selection can be maximized by increasing the precision of the estimation of SNP effects and by maximizing the relationships between test sibs and candidate sibs. Another means of increasing the accuracy of the estimation of SNP effects is to create individuals in the test population with extreme genotypes. The latter approach was studied here with creation of double haploids and use of non-random mating designs.</p> <p>Methods</p> <p>Six alternative breeding schemes were simulated in which the design of the test population was varied: test sibs inherited maternal (<it>Mat</it>), paternal (<it>Pat</it>) or a mixture of maternal and paternal (<it>MatPat</it>) double haploid genomes or test sibs were obtained by maximum coancestry mating (<it>MaxC</it>), minimum coancestry mating (<it>MinC</it>), or random (<it>RAND</it>) mating. Three thousand test sibs and 3000 candidate sibs were genotyped. The test sibs were recorded for a trait that could not be measured on the candidates and were used to estimate SNP effects. Selection was done by truncation on genome-wide estimated breeding values and 100 individuals were selected as parents each generation, equally divided between both sexes.</p> <p>Results</p> <p>Results showed a 7 to 19% increase in selection accuracy and a 6 to 22% increase in genetic gain in the <it>MatPat</it> scheme compared to the <it>RAND</it> scheme. These increases were greater with lower heritabilities. Among all other scenarios, i.e. <it>Mat, Pat, MaxC</it>, and <it>MinC</it>, no substantial differences in selection accuracy and genetic gain were observed.</p> <p>Conclusions</p> <p>In conclusion, a test population designed with a mixture of paternal and maternal double haploids, i.e. the <it>MatPat</it> scheme, increases substantially the accuracy of selection and genetic gain. This will be particularly interesting for traits that cannot be recorded on the selection candidates and require the use of sib tests, such as disease resistance and meat quality.</p

    Surpassing the Line: Urban-Oriented Strategies in the Development of Business Complexes in Poland

    Get PDF
    Development trends regarding the business-related urban complexes seem to evolve from the "big-box" towards the more "multi-use" types of structures. Within it, the special role is reserved for places, which - due to economic, political, and geographical reasons - have not been previously considered as major business hubs. Only recently, places like cities in Central and Eastern Europe have become attractive locations for business complexes. These could offer centrally located and attractive locations for new structures, which resulted in the development of the new type of commercial centers - in the form of multi-use districts, walkable, and complemented by other uses. Therefore, to some extent, these cities "surpassed the development line" of the commercial and business complexes, and have become home to something much more advanced. Within the article, the cases from Poland, including Gdańsk, Warsaw, Cracow, and Wroclaw, are discussed. Not only is the urban arrangement of selected complexes presented, but the planning and socio-economic, legal, and infrastructural aspects of these developments are also discussed

    Genomic prediction in CIMMYT maize and wheat breeding programs

    Get PDF
    Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required.J Crossa, P Pérez, J Hickey, J Burgueño, L Ornella, J Cerón-Rojas, X Zhang, S Dreisigacker, R Babu, Y Li, D Bonnett and K Mathew

    Extension of the bayesian alphabet for genomic selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two Bayesian methods, BayesC<it>π </it>and BayesD<it>π</it>, were developed for genomic prediction to address the drawback of BayesA and BayesB regarding the impact of prior hyperparameters and treat the prior probability <it>π </it>that a SNP has zero effect as unknown. The methods were compared in terms of inference of the number of QTL and accuracy of genomic estimated breeding values (GEBVs), using simulated scenarios and real data from North American Holstein bulls.</p> <p>Results</p> <p>Estimates of <it>π </it>from BayesC<it>π</it>, in contrast to BayesD<it>π</it>, were sensitive to the number of simulated QTL and training data size, and provide information about genetic architecture. Milk yield and fat yield have QTL with larger effects than protein yield and somatic cell score. The drawback of BayesA and BayesB did not impair the accuracy of GEBVs. Accuracies of alternative Bayesian methods were similar. BayesA was a good choice for GEBV with the real data. Computing time was shorter for BayesC<it>π </it>than for BayesD<it>π</it>, and longest for our implementation of BayesA.</p> <p>Conclusions</p> <p>Collectively, accounting for computing effort, uncertainty as to the number of QTL (which affects the GEBV accuracy of alternative methods), and fundamental interest in the number of QTL underlying quantitative traits, we believe that BayesC<it>π </it>has merit for routine applications.</p

    A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data.</p> <p>Methods</p> <p>A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information.</p> <p>Results</p> <p>The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available.</p> <p>Conclusions</p> <p>The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets.</p

    Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq.)

    Get PDF
    Background Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. Results The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Conclusion Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation
    corecore