1,553 research outputs found
New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer
Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as "tracers" to specifically target cell surface-associated epithelial mucin (MUC1), a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry
Mise en correspondance de données textuelles hétérogènes à partir d'informations sémantiques
Dans cet article, nous présentons une approche pour mesurer la similarité sémantique entre des textes hétérogènes et de qualité différente provenant de différentes sources Web. Notre approche commence par extraire le contenu des textes par deux méthodes : (i) utilisation d'un système d'extraction que nous avons implanté et qui identifie tous les mots contenus dans un texte donné, (ii) utilisation d'un thésaurus multilingue (AGROVOC). Ensuite, nous combinons les résultats des deux approches afin de mesurer la similarité entre les représentations textuelles des documents. Afin d'évaluer les résultats, nous nous appuyons sur deux ensembles de données hétérogènes issus du Web (tweets et articles scientifiques). (Résumé d'auteur
- …
