5,279 research outputs found

    Persistent Vascular Collagen Accumulation Alters Hemodynamic Recovery from Chronic Hypoxia

    Get PDF
    Pulmonary arterial hypertension (PAH) is caused by narrowing and stiffening of the pulmonary arteries that increase pulmonary vascular impedance (PVZ). In particular, small arteries narrow and large arteries stiffen. Large pulmonary artery (PA) stiffness is the best current predictor of mortality from PAH. We have previously shown that collagen accumulation leads to extralobar PA stiffening at high strain (Ooi et al. 2010). We hypothesized that collagen accumulation would increase PVZ, including total pulmonary vascular resistance (Z0), characteristic impedance (ZC), pulse wave velocity (PWV) and index of global wave reflections (Pb/Pf), which contribute to increased right ventricular afterload. We tested this hypothesis by exposing mice unable to degrade type I collagen (Col1a1R/R) to 21 days of hypoxia (hypoxia), some of which were allowed to recover for 42 days (recovery). Littermate wild-type mice (Col1a1+/+) were used as controls. In response to hypoxia, mean PA pressure (mPAP) increased in both mouse genotypes with no changes in cardiac output (CO) or PA inner diameter (ID); as a consequence, Z0 (mPAP/CO) increased by ∼100% in both genotypes (pZC, PWV and Pb/Pf did not change. However, with recovery, ZC and PWV decreased in the Col1a1+/+ mice and remained unchanged in the Col1a1R/R mice. Z0 decreased with recovery in both genotypes. Microcomputed tomography measurements of large PAs did not show evidence of stiffness changes as a function of hypoxia exposure or genotype. We conclude that hypoxia-induced PA collagen accumulation does not affect the pulsatile components of pulmonary hemodynamics but that excessive collagen accumulation does prevent normal hemodynamic recovery, which may have important consequences for right ventricular function

    ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound-induced cytoplasmic bleeding "flushes" WBs into the septal opening. Alternatively, contraction of septum-associated tethering proteins may pull WBs into the septal pore. Here, we investigate Woronin body dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41±1.5 nm). Live cell imaging of green-fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane "balloon", extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1-eGFP appeared associated with the "ballooning" plasma membrane, indicating that cytoplasmic ZtHex1-eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives in WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor CCCP induced WB translocation into the pores. Moreover, CCCP treatment recruited cytoplasmic ZtHex1-eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP-dependent process

    Co- variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica

    Get PDF
    Data from six sites in Victoria Land (72–77°S) investigating co-variation in soil communities (microbial and invertebrate) with biogeochemical properties showthe influence of soil properties on habitat suitability varied among local landscapes as well as across climate gradients. Species richness of metazoan invertebrates (Nematoda, Tardigrada and Rotifera) was similar to previous descriptions in this region, though identification of three cryptic nematode species of Eudorylaimus through DNA analysis contributed to the understanding of controls over habitat preferences for individual species. Denaturing Gradient Gel Electrophoresis profiles revealed unexpectedly high diversity of bacteria. Distribution of distinct bacterial communities was associated with specific sites in northern and southern Victoria Land, as was the distribution of nematode and tardigrade species. Variation in soil metazoan communities was related to differences in soil organic matter, while bacterial diversity and community structure were not strongly correlated with any single soil property. There were no apparent correlations between metazoan and bacterial diversity, suggesting that controls over distribution and habitat suitability are different for bacterial and metazoan communities. Our results imply that top-down controls over bacterial diversity mediated by their metazoan consumers are not significant determinants of bacterial community structure and biomass in these ecosystems

    Ultrahigh-temperature osumilite gneisses in southern Madagascar record combined heat advection and high rates of radiogenic heat production in a long-lived high-T orogen

    Get PDF
    We report the discovery of osumilite in ultrahigh‐temperature (UHT) metapelites of the Anosyen domain, southern Madagascar. The gneisses equilibrated at ~930°C/0.6 GPa. Monazite and zircon U–Pb dates record 80 Ma of metamorphism. Monazite compositional trends reflect the transition from prograde to retrograde metamorphism at 550 Ma. Eu anomalies in monazite reflect changes in fO_2 relative to quartz–fayalite–magnetite related to the growth and breakdown of spinel. The ratio Gd/Yb in monazite records the growth and breakdown of garnet. High rates of radiogenic heat production were the primary control on metamorphic grade at the regional scale. The short duration of prograde metamorphism in the osumilite gneisses (<29 ± 8 Ma) suggests that a thin mantle lithosphere (<80 km) or advective heating may have also been important in the formation of this high‐T, low‐P terrane

    Challenges to evaluation of multilingual geographic information retrieval in GeoCLEF

    Get PDF
    This is the third year of the evaluation of geographic information retrieval (GeoCLEF) within the Cross-Language Evaluation Forum (CLEF). GeoCLEF 2006 presented topics and documents in four languages (English, German, Portuguese and Spanish). After two years of evaluation we are beginning to understand the challenges to both Geographic Information Retrieval from text and of evaluation of the results of geographic information retrieval. This poster enumerates some of these challenges to evaluation and comments on the limitations encountered in the first two evaluations

    A Near-Surface Microstructure Sensor System Used During TOGA COARE. Part II: Turbulence Measurements

    Get PDF
    New techniques developed for near-surface turbulence measurements during the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean–Atmosphere Response Experiment (COARE) employ a difference in spatial scales of turbulence and surface waves. According to this approach, high relative speed of the measurements provides separation of the turbulence and surface wave signals. During the TOGA COARE field studies, highresolution probes of pressure, temperature, conductivity, fluctuation velocity, and acceleration were mounted on the bow of the vessel at a 1.7-m depth in an undisturbed region ahead of the moving vessel. The localization in narrow frequency bands of the vibrations of the bow sensors allows accurate calculation of the dissipation rate. A coherent noise reduction algorithm effectively removes vibration contamination of the velocity dataset. Due to the presence of surface waves and the associated pitching of the vessel, the bow probes ‘‘scanned’’ the near-surface layer of the ocean. Contour plots calculated using the bow signals provide a spatial context for the analysis of near-surface turbulence. A fast-moving free-rising profiler equipped by similar probes sampled the near-surface turbulence during stations. Theory of the three-component electromagnetic velocity sensor and examples of data obtained by bow sensors and free-rising profiler are also presented in this paper

    Liquid-crystal electro-optic modulator based on electrohydrodynamic effects

    Get PDF
    A new method of light modulation is reported. This method is based on the electro-optical properties of nematic materials and on the use of a new wedge structure. The advantages of this structure are the possibility of modulating nonpolarized light and the improved signal-to-noise ratio. The highest modulating frequency obtained is 25 kHz
    corecore