100 research outputs found

    A novel variant in GLIS3 is associated with osteoarthritis

    Get PDF
    Objectives Osteoarthritis (OA) is a complex disease, but its genetic aetiology remains poorly characterised. To identify novel susceptibility loci for OA, we carried out a genome-wide association study (GWAS) in individuals from the largest UK-based OA collections to date. Methods We carried out a discovery GWAS in 5414 OA individuals with knee and/or hip total joint replacement (TJR) and 9939 population-based controls. We followed-up prioritised variants in OA subjects from the interim release of the UK Biobank resource (up to 12 658 cases and 50 898 controls) and our lead finding in operated OA subjects from the full release of UK Biobank (17 894 cases and 89 470 controls). We investigated its functional implications in methylation, gene expression and proteomics data in primary chondrocytes from 12 pairs of intact and degraded cartilage samples from patients undergoing TJR. Results We detect a genome-wide significant association at rs10116772 with TJR (P=3.7×10−8; for allele A: OR (95% CI) 0.97 (0.96 to 0.98)), an intronic variant in GLIS3, which is expressed in cartilage. Variants in strong correlation with rs10116772 have been associated with elevated plasma glucose levels and diabetes. Conclusions We identify a novel susceptibility locus for OA that has been previously implicated in diabetes and glycaemic traits

    Not All Income is the Same to Everyone: Cognitive Ability and the House Money Effect in Public Goods Games

    Get PDF
    The provision of public goods often suffers from a social dilemma generating too little contributions. Yet, it remains an open question how positive contributions materialise. Existing studies suggest that individuals' decisions on how much to contribute depend on cognitive skills. Furthermore, mental accounting research indicates that the source of income matters for economic decision making. I show experimentally that subjects' contributions in a one-shot linear public goods game depend on an interplay of the two factors. While a house money effect exists for subjects with low cognitive skills there is no such effect for those with high cognitive skills. My findings have important implications for taxation, redistribution, and voting behaviour, as well as past and future experiments

    Combination therapy as a potential risk factor for the development of type 2 diabetes in patients with schizophrenia: the GOMAP study.

    Get PDF
    BACKGROUND: Schizophrenia (SCZ) is associated with increased risk of type 2 diabetes (T2D). The potential diabetogenic effect of concomitant application of psychotropic treatment classes in patients with SCZ has not yet been evaluated. The overarching goal of the Genetic Overlap between Metabolic and Psychiatric disease (GOMAP) study is to assess the effect of pharmacological, anthropometric, lifestyle and clinical measurements, helping elucidate the mechanisms underlying the aetiology of T2D. METHODS: The GOMAP case-control study (Genetic Overlap between Metabolic and Psychiatric disease) includes hospitalized patients with SCZ, some of whom have T2D. We enrolled 1653 patients with SCZ; 611 with T2D and 1042 patients without T2D. This is the first study of SCZ and T2D comorbidity at this scale in the Greek population. We retrieved detailed information on first- and second-generation antipsychotics (FGA, SGA), antidepressants and mood stabilizers, applied as monotherapy, 2-drug combination, or as 3- or more drug combination. We assessed the effects of psychotropic medication, body mass index, duration of schizophrenia, number of hospitalizations and physical activity on risk of T2D. Using logistic regression, we calculated crude and adjusted odds ratios (OR) to identify associations between demographic factors and the psychiatric medications. RESULTS: Patients with SCZ on a combination of at least three different classes of psychiatric drugs had a higher risk of T2D [OR 1.81 (95% CI 1.22-2.69); p = 0.003] compared to FGA alone therapy, after adjustment for age, BMI, sex, duration of SCZ and number of hospitalizations. We did not find evidence for an association of SGA use or the combination of drugs belonging to two different classes of psychiatric medications with increased risk of T2D [1.27 (0.84-1.93), p = 0.259 and 0.98 (0.71-1.35), p = 0.885, respectively] compared to FGA use. CONCLUSIONS: We find an increased risk of T2D in patients with SCZ who take a combination of at least three different psychotropic medication classes compared to patients whose medication consists only of one or two classes of drugs

    The Use of Technology in the Subcategorisation of Osteoarthritis: a Delphi Study Approach

    Get PDF
    Objective This UK-wide OATech Network + consensus study utilised a Delphi approach to discern levels of awareness across an expert panel regarding the role of existing and novel technologies in osteoarthritis research. To direct future cross-disciplinary research it aimed to identify which could be adopted to subcategorise patients with osteoarthritis (OA). Design An online questionnaire was formulated based on technologies which might aid OA research and subcategorisation. During a two-day face-to-face meeting concordance of expert opinion was established with surveys (23 questions) before, during and at the end of the meeting (Rounds 1, 2 and 3, respectively). Experts spoke on current evidence for imaging, genomics, epigenomics, proteomics, metabolomics, biomarkers, activity monitoring, clinical engineering and machine learning relating to subcategorisation. For each round of voting, ≥80% votes led to consensus and ≤20% to exclusion of a statement. Results Panel members were unanimous that a combination of novel technological advances have potential to improve OA diagnostics and treatment through subcategorisation, agreeing in Rounds 1 and 2 that epigenetics, genetics, MRI, proteomics, wet biomarkers and machine learning could aid subcategorisation. Expert presentations changed participants’ opinions on the value of metabolomics, activity monitoring and clinical engineering, all reaching consensus in Round 2. X-rays lost consensus between Rounds 1 and 2; clinical X-rays reached consensus in Round 3. Conclusion Consensus identified that 9 of the 11 technologies should be targeted towards OA subcategorisation to address existing OA research technology and knowledge gaps. These novel, rapidly evolving technologies are recommended as a focus for emergent, cross-disciplinary osteoarthritis research programmes

    Evaluating the glucose raising effect of established loci via a genetic risk score.

    Get PDF
    Recent genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with glucose levels. We tested the hypothesis here whether the cumulative effect of glucose raising SNPs, assessed via a score, is associated with glucose levels. A total of 1,434 participants of Greek descent from the THISEAS study and 1,160 participants form the GOMAP study were included in this analysis. We developed a genetic risk score (GRS), based on the known glucose-raising loci, in order to investigate the cumulative effect of known glucose loci on glucose levels. In the THISEAS study, the GRS score was significantly associated with increased glucose levels (mmol/L) (β ± SE: 0.024 ± 0.004, P = 8.27e-07). The effect of the genetic risk score was also significant in the GOMAP study (β ± SE: 0.011 ± 0.005, P = 0.031). In the meta-analysis of the two studies both scores were significantly associated with higher glucose levels GRS: β ± SE: 0.019 ± 0.003, P = 1.41e-09. Also, variants at the SLC30A8, PROX1, MTNR1B, ADRA2A, G6PC2, LPIN3 loci indicated nominal evidence for association with glucose levels (p < 0.05). We replicate associations of the established glucose raising variants in the Greek population and confirm directional consistency of effects (binomial sign test p = 6.96e-05). We also demonstrate that the cumulative effect of the established glucose loci yielded a significant association with increasing glucose levels

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
    corecore