933 research outputs found

    Modular Nucleic Acid Assembled p/MHC Microarrays for Multiplexed Sorting of Antigen-Specific T Cells

    Get PDF
    The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called “Nucleic Acid Cell Sorting (NACS)”, single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection

    Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    Get PDF
    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a, Rps18, Rps29, Sdha, Tbp and Ubc) across several juvenile and adult rat tissues (liver, adrenal, prostate, fat pad, testis and ovaries), both under normal conditions and following exposure to various chemicals during development. Employing NormFinder and BestKeeper softwares, we found Hprt and Sdha to be amongst the most stable genes across normal and manipulated tissues, with several others also being suitable for most tissues. Tbp and B2m displayed highest variability in transcript levels between tissues and developmental stages. It was also observed that the reference genes were most unstable in liver and testis following toxicological exposure. For future studies, we propose the use of more than one verified reference gene and the continuous monitoring of their suitability under various experimental conditions, including toxicological studies, based on changes in threshold (Ct) values from cDNA samples having been reverse-transcribed from a constant input concentration of RNA

    Juvenile Male Rats Exposed to a Low-Dose Mixture of Twenty-Seven Environmental Chemicals Display Adverse Health Effects

    Get PDF
    <div><p>Humans are exposed to a large number of environmental chemicals in their daily life, many of which are readily detectable in blood or urine. It remains uncertain if these chemicals can cause adverse health effects when present together at low doses. In this study we have tested whether a mixture of 27 chemicals administered orally to juvenile male rats for three months could leave a pathophysiological footprint. The mixture contained metals, perfluorinated compounds, PCB, dioxins, pesticides, heterocyclic amines, phthalate, PAHs and others, with a combined dose of 0.16 (Low dose), 0.47 (Mid dose) or 1.6 (High dose) mg/kg bw/day. The lowest dose was designed with the aim of obtaining plasma or urine concentrations in rats at levels approaching those observed in humans. Some single congeners were administered at doses representative of combined doses for chemical groups. With this baseline, we found effects on weight, histology and gene expression in the liver, as well as changes to the blood plasma metabolome in all exposure groups, including low-dose. Additional adverse effects were observed in the higher dosed groups, including enlarged kidneys and alterations to the metabolome. No significant effects on reproductive parameters were observed.</p></div

    Preclinical evaluation of NF-kappa B-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination

    Get PDF
    Background: Merkel cell carcinoma (MCC) is a rare but very aggressive skin tumor that develops after integration of a truncated form of the large T-antigen (truncLT) of the Merkel cell polyomavirus (MCV) into the host’s genome. Therapeutic vaccination with dendritic cells (DCs) loaded with tumor antigens is an active form of immunotherapy, which intends to direct the immune system towards tumors which express the respective vaccination antigens. Methods: Cytokine-matured monocyte-derived DCs of healthy donors and MCC patients were electroporated with mRNA encoding the truncLT. To permit major histocompatibility complex (MHC) class II next to class I presentation, we used an RNA construct in which the antigen was fused to a DCLamp sequence in addition to the unmodified antigen. To further improve their immunogenicity, the DCs were additionally activated by co-transfection with the constitutively active nuclear factor (NF)-κB activator caIKK. These DCs were used to stimulate autologous CD8 + T-cells or a mixture of CD4 + and CD8 + T-cells. Then the percentage of T-cells, specific for the truncLT, was quantified by interferon (IFN)γ ELISpot assays. Results: Both the truncLT and its DCLamp-fusion were detected within the DCs by flow cytometry, albeit the latter required blocking of the proteasome. The transfection with caIKK upregulated maturation markers and induced cytokine production. After 2–3 rounds of stimulation, the T-cells from 11 out of 13 healthy donors recognized the antigen. DCs without caIKK appeared in comparison less potent in inducing such responses. When using cells derived from MCC patients, we could induce responses for 3 out of 5 patients; however, here the caIKK-transfected DCs did not display their superiority. Conclusion: These results show that optimized DCs are able to induce MCV-antigen-specific T-cell responses. Therapeutic vaccination with such transfected DCs could direct the immune system against MCC
    corecore