1,459 research outputs found
Baseline and triangulation geometry in a standard plenoptic camera
In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model
Sample Return Propulsion Technology Development Under NASA's ISPT Project
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.1
Schroedinger equation for joint bidirectional motion in time
The conventional, time-dependent Schroedinger equation describes only
unidirectional time evolution of the state of a physical system, i.e., forward
or, less commonly, backward. This paper proposes a generalized quantum dynamics
for the description of joint, and interactive, forward and backward time
evolution within a physical system. [...] Three applications are studied: (1) a
formal theory of collisions in terms of perturbation theory; (2) a
relativistically invariant quantum field theory for a system that kinematically
comprises the direct sum of two quantized real scalar fields, such that one
field evolves forward and the other backward in time, and such that there is
dynamical coupling between the subfields; (3) an argument that in the latter
field theory, the dynamics predicts that in a range of values of the coupling
constants, the expectation value of the vacuum energy of the universe is forced
to be zero to high accuracy. [...]Comment: 30 pages, no figures. Related material is in quant-ph/0404012.
Differs from published version by a few added remarks on the possibility of a
large-scale-average negative energy density in spac
A hydrodynamically optimized nano-electrospray ionization source and vacuum interface
The coupling of atmospheric pressure ionization (API) sources like electrospray ionization (ESI) to vacuum based applications like mass spectrometry (MS) or ion beam deposition (IBD) is done by differential pumping, starting with a capillary or pinhole inlet. Because of its low ion transfer efficiency the inlet represents a major bottleneck for these applications. Here we present a nano-ESI vacuum interface optimized to exploit the hydrodynamic drag of the background gas for collimation and the reduction of space charge repulsion. Up to a space charge limit of 40 nA we observe 100% current transmission through a capillary with an inlet and show by MS and IBD experiments that the transmitted ion beams are well defined and free of additional contamination compared to a conventional interface. Based on computational fluid dynamics modelling and ion transport simulations, we show how the specific shape enhances the collimation of the ion cloud. Mass selected ion currents in the nanoampere range available further downstream in high vacuum open many perspectives for the efficient use of electrospray ion beam deposition (ES-IBD) as a surface coating method
Inhibition of death receptor signals by cellular FLIP.
The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis
Time as an operator/observable in nonrelativistic quantum mechanics
The nonrelativistic Schroedinger equation for motion of a structureless
particle in four-dimensional space-time entails a well-known expression for the
conserved four-vector field of local probability density and current that are
associated with a quantum state solution to the equation. Under the physical
assumption that each spatial, as well as the temporal, component of this
current is observable, the position in time becomes an operator and an
observable in that the weighted average value of the time of the particle's
crossing of a complete hyperplane can be simply defined: ... When the
space-time coordinates are (t,x,y,z), the paper analyzes in detail the case
that the hyperplane is of the type z=constant. Particles can cross such a
hyperplane in either direction, so it proves convenient to introduce an
indefinite metric, and correspondingly a sesquilinear inner product with
non-Hilbert space structure, for the space of quantum states on such a surface.
>... A detailed formalism for computing average crossing times on a z=constant
hyperplane, and average dwell times and delay times for a zone of interaction
between a pair of z=constant hyperplanes, is presented.Comment: 31 pages, no figures. Differs from published version by minor
corrections and additions, and two citation
Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions
Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions
Effect of pathologic tumor response and nodal status on survival in the medical research council adjuvant gastric infusional chemotherapy trial
Purpose: The Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial established perioperative epirubicin, cisplatin, and fluorouracil chemotherapy as a standard of care for patients with resectable esophagogastric cancer. However, identification of patients at risk for relapse remains challenging. We evaluated whether pathologic response and lymph node status after neoadjuvant chemotherapy are prognostic in patients treated in the MAGIC trial. Materials and Methods: Pathologic regression was assessed in resection specimens by two independent pathologists using the Mandard tumor regression grading system (TRG). Differences in overall survival (OS) according to TRG were assessed using the Kaplan-Meier method and compared using the log-rank test. Univariate and multivariate analyses using the Cox proportional hazards method established the relationships among TRG, clinical-pathologic variables, and OS. Results: Three hundred thirty resection specimens were analyzed. In chemotherapy-treated patients with a TRG of 1 or 2, median OS was not reached, whereas for patients with a TRG of 3, 4, or 5, median OS was 20.47 months. On univariate analysis, high TRG and lymph node metastases were negatively related to survival (Mandard TRG 3, 4, or 5: hazard ratio [HR], 1.94; 95% CI, 1.11 to 3.39; P = .0209; lymph node metastases: HR, 3.63; 95% CI, 1.88 to 7.0; P < .001). On multivariate analysis, only lymph node status was independently predictive of OS (HR, 3.36; 95% CI, 1.70 to 6.63; P < .001). Conclusion: Lymph node metastases and not pathologic response to chemotherapy was the only independent predictor of survival after chemotherapy plus resection in the MAGIC trial. Prospective evaluation of whether omitting postoperative chemotherapy and/or switching to a noncross-resistant regimen in patients with lymph node-positive disease whose tumor did not respond to preoperative epirubicin, cisplatin, and fluorouracil may be appropriate
Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels
Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion
Definition of the σW regulon of Bacillus subtilis in the absence of stress
Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions
- …
