1,468 research outputs found

    Possible superconducting fluctuation and pseudogap state above TcT_c in CsFe2_2As2_2

    Full text link
    Resistive, magnetization, torque, specific heat and scanning tunneling microscopy measurements are carried out on the hole heavily doped CsFe2_2As2_2 single crystals. A characteristic temperature T13T^*\sim13 K, which is several times higher than the superconducting transition temperature Tc=2.15T_c=2.15 K, is observed and possibly related to the superconducting fluctuation or the pseudogap state. A diamagnetic signal detected by torque measurements starts from the superconducting state, keeps finite and vanishes gradually until a temperature near TT^*. Temperature dependent resistivity and specific heat also show kinks near TT^*. An asymmetric gap-like feature with the energy of 8.4 meV and a symmetric superconducting related gap of 2.2 meV on the scanning tunneling spectra are detected, and these pseudogap-related features disappear at temperatures up to at least 9 K. These observations by different experimental tools suggest the possible existence of superconducting fluctuation or pseudogap state in the temperature range up to 4 - 6 times of TcT_c in CsFe2_2As2_2.Comment: 6 pages, 4 figure

    Top quark pair production at small transverse momentum in hadronic collisions

    Full text link
    We investigate the transverse momentum resummation for top quark pair production at hadron colliders using the soft-collinear effective theory and the heavy-quark effective theory. We derive the factorization formula for ttˉt\bar{t} production at small pair transverse momentum, and show in detail the procedure for calculating the key ingredient of the factorization formula: the next-to-leading order soft functions. We compare our numerical results with experimental data and find that they are consistent within theoretical and experimental uncertainties. To verify the correctness of our resummation formula, we expand it to the next-to-leading order and the next-to-next-to-leading order, and compare those expressions with the exact fixed-order results numerically. Finally, using the results of transverse momentum resummation, we discuss the transverse-momentum-dependent forward-backward asymmetry at the Tevatron.Comment: 39 pages, 7 figures, 1 table; final version in PR

    Structural and bonding character of potassium-doped p-terphenyl superconductors

    Full text link
    Recently, there is a series of reports by Wang et al. on the superconductivity in K-doped p-terphenyl (KxC18H14) with the transition temperatures range from 7 to 123 Kelvin. Identifying the structural and bonding character is the key to understand the superconducting phases and the related properties. Therefore we carried out an extensive study on the crystal structures with different doping levels and investigate the thermodynamic stability, structural, electronic, and magnetic properties by the first-principles calculations. Our calculated structures capture most features of the experimentally observed X-ray diffraction patterns. The K doping concentration is constrained to within the range of 2 and 3. The obtained formation energy indicates that the system at x = 2.5 is more stable. The strong ionic bonding interaction is found in between K atoms and organic molecules. The charge transfer accounts for the metallic feature of the doped materials. For a small amount of charge transferred, the tilting force between the two successive benzenes drives the system to stabilize at the antiferromagnetic ground state, while the system exhibits non-magnetic behavior with increasing charge transfer. The multiformity of band structures near the Fermi level indicates that the driving force for superconductivity is complicated.Comment: 8 pages, 7 figure
    corecore