304 research outputs found

    Enhanced Root and Stem Growth and Physiological Changes in Pinus bungeana Zucc. Seedlings by Microbial Inoculant Application

    Get PDF
    Background and Objectives: As an extensively used tree species in landscaping and afforestation in China, lacebark pine (Pinus bungeana Zucc.) seedlings are in high demand. However, the small number of fine roots and the low growth rate of lacebark pine seedlings increase the risks encountered during transplant and extend the nursery time for outplanting. We aimed to find out whether a microbial inoculant would promote root growth and accordingly, shorten the nursery cultivation time. Materials and Methods: One-year-old lacebark pine seedlings were treated with the inoculant Bacillus subtilis 8–32 six times from June to September. At each application time, five treatments of undiluted microbial inoculants (UM), 30 times diluted microbial inoculants (30 DM), 40 times diluted microbial inoculants (40 DM), 50 times diluted microbial inoculants (50 DM), and distilled water as a control (CTRL) were administered to the seedlings. In the end, all the seedlings were harvested to measure the root growth, aboveground growth, and the physiological indices. Results: Root and stem growth was enhanced by the inoculants in terms of the increased number of root tips, the length and surface area of the roots, the biomass of the roots and stems, as well as the increase in height and basal stem diameter. The chlorophyll a/b of the needles was increased, in spite of the fact that the total chlorophyll content was decreased by the microbial inoculant treatments at the end of the growth phase. Meanwhile, the maximum photochemical efficiency (Fv/Fm) of the needles was increased by the inoculant treatments. The soluble sugar content was additionally translocated into the stems in the UM treatment, suggesting the change in carbon allocation. The content of available potassium, phosphorus, and ammonium nitrogen in the potting soil was increased in the 30 DM group, and the content of soil organic matter was increased in all the inoculant treatments. Conclusions: The microbial inoculant Bacillus subtilis 8–32, in appropriate concentrations, could be applied to promote root and shoot growth and improve the seedling quality of the lacebark pine during cultivation

    Development and Characterization of a Novel Anti-idiotypic Monoclonal Antibody to Growth Hormone, Which Can Mimic Physiological Functions of Growth Hormone in Primary Porcine Hepatocytes

    Get PDF
    B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production

    Validation of 58 autosomal individual identification SNPs in three Chinese populations

    Get PDF
    Aim To genotype and evaluate a panel of single-nucleotide polymorphisms for individual identification (IISNPs) in three Chinese populations: Chinese Han, Uyghur, and Tibetan. Methods Two previously identified panels of IISNPs, 86 unlinked IISNPs and SNPforID 52-plex markers, were pooled and analyzed. Four SNPs were included in both panels. In total, 132 SNPs were typed on Sequenom MassARRAY® platform in 330 individuals from Han Chinese, Uyghur, and Tibetan populations. Population genetic indices and forensic parameters were determined for all studied markers. Results No significant deviation from Hardy-Weinberg equilibrium was observed for any of the SNPs in 3 populations. Expected heterozygosity (He) ranged from 0.144 to 0.500 in Han Chinese, from 0.197 to 0.500 in Uyghur, and from 0.018 to 0.500 in Tibetan population. Wright’s Fst values ranged from 0.0001 to 0.1613. Pairwise linkage disequilibrium (LD) calculations for all 132 SNPs showed no significant LD across the populations (r2<0.147). A subset of 58 unlinked IISNPs (r20.450 and Fst values from 0.0002 to 0.0536 gave match probabilities of 10−25 and a cumulative probability of exclusion of 0.999992. Conclusion The 58 unlinked IISNPs with high heterozygosity have low allele frequency variation among 3 Chinese populations, which makes them excellent candidates for the development of multiplex assays for individual identification and paternity testing

    Molecular Characterization of Tb, a New Approach for an Ancient Brucellaphage

    Get PDF
    Tb (Tbilisi), the reference Brucellaphage strain, was classified as a member of the Podoviridae family with icosahedral capsids (57 ± 2 nm diameter) and short tails (32 ± 3 nm long). Brucellaphage DNA was double stranded and unmethylated; its molecular size was 34.5 kilobase pairs. Some sequences were found through RAPD analysis, TA cloning technology, and structural proteins were observed by using SDS-PAGE. Thus, the results have laid the foundation for the wider use of Brucellaphage’s basic mechanisms and practical applications

    From hyper- to hypoinsulinemia and diabetes: effect of KCNH6 on insulin secretion

    Get PDF
    Glucose-stimulated insulin secretion from islet β cells is mediated by K channels. However, the role of non-K K channels in insulin secretion is largely unknown. Here, we show that a non-K K channel, KCNH6, plays a key role in insulin secretion and glucose hemostasis in humans and mice. KCNH6 p.P235L heterozygous mutation co-separated with diabetes in a four-generation pedigree. Kcnh6 knockout (KO) or Kcnh6 p.P235L knockin (KI) mice had a phenotype characterized by changing from hypoglycemia with hyperinsulinemia to hyperglycemia with insulin deficiency. Islets from the young KO mice had increased intracellular calcium concentration and increased insulin secretion. However, islets from the adult KO mice not only had increased intracellular calcium levels but also had remarkable ER stress and apoptosis, associated with loss of β cell mass and decreased insulin secretion. Therefore, dysfunction of KCNH6 causes overstimulation of insulin secretion in the short term and β cell failure in the long term.Yang et al. show that KCNH6 plays a key role in insulin secretion and glucose hemostasis in humans and mice. Dysfunction of KCNH6 results in a hyperinsulinemia phenotype in the short term and hypoinsulinemia and diabetes in the long term
    corecore