1,600 research outputs found
End-to-end Projector Photometric Compensation
Projector photometric compensation aims to modify a projector input image
such that it can compensate for disturbance from the appearance of projection
surface. In this paper, for the first time, we formulate the compensation
problem as an end-to-end learning problem and propose a convolutional neural
network, named CompenNet, to implicitly learn the complex compensation
function. CompenNet consists of a UNet-like backbone network and an autoencoder
subnet. Such architecture encourages rich multi-level interactions between the
camera-captured projection surface image and the input image, and thus captures
both photometric and environment information of the projection surface. In
addition, the visual details and interaction information are carried to deeper
layers along the multi-level skip convolution layers. The architecture is of
particular importance for the projector compensation task, for which only a
small training dataset is allowed in practice. Another contribution we make is
a novel evaluation benchmark, which is independent of system setup and thus
quantitatively verifiable. Such benchmark is not previously available, to our
best knowledge, due to the fact that conventional evaluation requests the
hardware system to actually project the final results. Our key idea, motivated
from our end-to-end problem formulation, is to use a reasonable surrogate to
avoid such projection process so as to be setup-independent. Our method is
evaluated carefully on the benchmark, and the results show that our end-to-end
learning solution outperforms state-of-the-arts both qualitatively and
quantitatively by a significant margin.Comment: To appear in the 2019 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Source code and dataset are available at
https://github.com/BingyaoHuang/compenne
High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference
We propose a data-driven method for recovering miss-ing parts of 3D shapes.
Our method is based on a new deep learning architecture consisting of two
sub-networks: a global structure inference network and a local geometry
refinement network. The global structure inference network incorporates a long
short-term memorized context fusion module (LSTM-CF) that infers the global
structure of the shape based on multi-view depth information provided as part
of the input. It also includes a 3D fully convolutional (3DFCN) module that
further enriches the global structure representation according to volumetric
information in the input. Under the guidance of the global structure network,
the local geometry refinement network takes as input lo-cal 3D patches around
missing regions, and progressively produces a high-resolution, complete surface
through a volumetric encoder-decoder architecture. Our method jointly trains
the global structure inference and local geometry refinement networks in an
end-to-end manner. We perform qualitative and quantitative evaluations on six
object categories, demonstrating that our method outperforms existing
state-of-the-art work on shape completion.Comment: 8 pages paper, 11 pages supplementary material, ICCV spotlight pape
Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features
TThe goal of our work is to discover dominant objects in a very general
setting where only a single unlabeled image is given. This is far more
challenge than typical co-localization or weakly-supervised localization tasks.
To tackle this problem, we propose a simple but effective pattern mining-based
method, called Object Location Mining (OLM), which exploits the advantages of
data mining and feature representation of pre-trained convolutional neural
networks (CNNs). Specifically, we first convert the feature maps from a
pre-trained CNN model into a set of transactions, and then discovers frequent
patterns from transaction database through pattern mining techniques. We
observe that those discovered patterns, i.e., co-occurrence highlighted
regions, typically hold appearance and spatial consistency. Motivated by this
observation, we can easily discover and localize possible objects by merging
relevant meaningful patterns. Extensive experiments on a variety of benchmarks
demonstrate that OLM achieves competitive localization performance compared
with the state-of-the-art methods. We also evaluate our approach compared with
unsupervised saliency detection methods and achieves competitive results on
seven benchmark datasets. Moreover, we conduct experiments on fine-grained
classification to show that our proposed method can locate the entire object
and parts accurately, which can benefit to improving the classification results
significantly
- …
