487 research outputs found
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
An RF Approach to Modelling Gallium Nitride Power Devices Using Parasitic Extraction
This paper begins with a comprehensive review into the existing GaN device models. Secondly, it identifies the need for a more accurate GaN switching model. A simple practical process based on radio frequency techniques using Vector Network Analyser is introduced in this paper as an original contribution. It was applied to extract the impedances of the GaN device to develop an efficient behavioural model. The switching behaviour of the model was validated using both simulation and real time double pulse test experiments at 500 V, 15 A conditions. The proposed model is much easier for power designers to handle, without the need for knowledge about the physics or geometry of the device. The proposed model for Transphorm GaN HEMT was found to be 95.2% more accurate when compared to the existing LT-Spice manufacturer model. This work additionally highlights the need to adopt established RF techniques into power electronics to reduce the learning curve while dealing with these novel high-speed switching devices.</jats:p
Indirect Effective Controlled Split Source Inverter-Based Parallel Active Power Filter for Enhancing Power Quality
The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC)
Implementation of Non-Isolated Zeta-KY Triple Port Converter for Renewable Energy Applications
This paper proposes a three-port Zeta-KY dc-dc converter which is fed with hybrid sources like photovoltaic (PV) cells and batteries. The converter proposed here is a multi-input single-output (MISO) structure which harnesses the benefits of Zeta and KY converters. The combination of these converters is highly advantageous since the Zeta converter provides lesser output voltage ripples with high gain and the KY converter topology suits well for withstanding load transients. The KY converter used in this research work is subjected to a topological change to facilitate bidirectional power flow. The bidirectional flow is essential to save the excess power in PV source in batteries during low load conditions. This novel multiport topology with bidirectional facility is first of its kind and has not been discussed earlier in the research arena. In the proposed work, two control algorithms are developed and deployed: the first one ensures the maximum power extraction from the PV and the second one maintains constant dc bus voltage and manages bidirectional power flow. MATLAB Simulink and hardware prototype of the proposed system has been realized for a 72 V dc bus and a 500 W electric vehicular drive. The simulation and experimental results reveal that the proposed system is viable for medium power electric shuttle applications. The proposed system is subjected to various test cases and it is observed that the source and load intermittencies are catered very well by the proposed three port Zeta-KY converter. The developed multiport converter is feasible for renewable energy applications
Performance Enhancement of a Partially Shaded Photovoltaic Array by Optimal Reconfiguration and Current Injection Schemes
The output of a photovoltaic array is reduced considerably when PV panels are shaded even partially. The impact of shading causes an appreciable loss in power delivery, since the PV panels are connected in series and parallel to contribute to the required voltage and power for the load. The prevailing research on mitigating the shading impact is mostly based on complex reconfiguration strategies where the PV panels are subjected to complex rewiring schemes. On the other hand, to disperse the shading many studies in the literature defend the physical rearrangement of the panels. The available intensive reconfiguration schemes, such as the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) schemes, try only to mitigate the shading impact and there is no scope for compensation; as a result, a loss of output power is inevitable. In the proposed research work, both the mitigation of and the compensation for the losses incurred due to shading are studied. In this work, an optimal reconfiguration scheme is adopted to reduce the shading impact and a power electronic circuit with a battery source is designed to compensate for the shading losses in all aspects. In the optimal reconfiguration scheme, a bifurcation strategy is adopted in each column and the electrical connections of the PV panels are interchanged such that the shading impact is dispersed. The power electronic circuit consists of a half-bridge buck converter with a battery source that injects the current required by a shaded column. This setup compensates for the shaded PV array’s power and improves the efficiency of the total system. The proposed scheme was implemented in a 3200 W system and subjected to various shading patterns, including single panel shading, corner shading, long and wide shading, and random shading. The proposed scheme was simulated in the MATLAB Simulink environment and compared with static 4 × 4 PV array configurations, including the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) configurations. The comparative performance was assessed in terms of mismatch power loss, fill factor, and efficiency. The proposed system is suitable for all shading patterns and was proved to be very efficient even in the worst shading, where 1353 W was saved
Smart Monitoring and Controlling of Appliances using LoRa Based IoT System
In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT ) systems. This paper presents a novel smart automa-tion system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone ap-plication and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the re-ceiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Net-work (WAN ) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption
Social Grouping Algorithm Aided Maximum Power Point Tracking Scheme for Partial Shaded Photovoltaic Array
Photovoltaic (PV) systems-based energy generation is relatively easy to install, even at a large scale, because it is scalable in size and is thus easy to transport. Harnessing maximum power is only possible if maximum power tracking (MPPT) functionality is available as part of the power converter control that interfaces the PV panels to the grid. Solar exposure covering all PV panels is unlikely to happen all the time, which is known as a partial shading (PS) phenomenon. As a result, depending on the MPPT algorithm adopted, it may fail to find a maximum global power peak, being locked into a local power peak. This research work discusses an alternative MPPT control technique inspired in the social group optimization (SGO) algorithm. SGO belongs to the meta-heuristic optimization techniques family. In this sense, the SGO method ability for solving global optimization problems is explored to find the global maximum power point (GMPP) under the presence of local MPPs. The introduced SGO–MPPT was subjected to different PS conditions and complex shading patterns. Then, its performance was compared to other global search MPPT techniques, which include particle swarm optimization (PSO), the dragon fly algorithm (DFO) and the artificial bee colony algorithm (ABC). The simulation outcomes for the SGO–MPPT characterization showed good results, namely rapid global power tracking in less than 0.2 s with reduced oscillation; the efficiency of solar energy harness was slightly above 99%
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Adapting a Markov Monte Carlo simulation model for forecasting the number of Coronary Artery Revascularisation Procedures in an era of rapidly changing technology and policy
<p>Abstract</p> <p>Background</p> <p>Treatments for coronary heart disease (CHD) have evolved rapidly over the last 15 years with considerable change in the number and effectiveness of both medical and surgical treatments. This period has seen the rapid development and uptake of statin drugs and coronary artery revascularization procedures (CARPs) that include Coronary Artery Bypass Graft procedures (CABGs) and Percutaneous Coronary Interventions (PCIs). It is difficult in an era of such rapid change to accurately forecast requirements for treatment services such as CARPs. In a previous paper we have described and outlined the use of a Markov Monte Carlo simulation model for analyzing and predicting the requirements for CARPs for the population of Western Australia (Mannan et al, 2007). In this paper, we expand on the use of this model for forecasting CARPs in Western Australia with a focus on the lack of adequate performance of the (standard) model for forecasting CARPs in a period during the mid 1990s when there were considerable changes to CARP technology and implementation policy and an exploration and demonstration of how the standard model may be adapted to achieve better performance.</p> <p>Methods</p> <p>Selected key CARP event model probabilities are modified based on information relating to changes in the effectiveness of CARPs from clinical trial evidence and an awareness of trends in policy and practice of CARPs. These modified model probabilities and the ones obtained by standard methods are used as inputs in our Markov simulation model.</p> <p>Results</p> <p>The projected numbers of CARPs in the population of Western Australia over 1995–99 only improve marginally when modifications to model probabilities are made to incorporate an increase in effectiveness of PCI procedures. However, the projected numbers improve substantially when, in addition, further modifications are incorporated that relate to the increased probability of a PCI procedure and the reduced probability of a CABG procedure stemming from changed CARP preference following the introduction of PCI operations involving stents.</p> <p>Conclusion</p> <p>There is often knowledge and sometimes quantitative evidence of the expected impacts of changes in surgical practice and procedure effectiveness and these may be used to improve forecasts of future requirements for CARPs in a population.</p
Epidemiology and genetic characterization of Peste des petits ruminants virus in Bangladesh
Peste des petits ruminants (PPR) is an acute, highly contagious disease responsible for high morbidity and mortality rates in susceptible sheep and goats. Adequate knowledge of the diversity of circulating strains of PPR virus will help livestock authorities choose appropriate vaccines. The objective of this study was to describe the epidemiology of PPR and characterize the strains circulating in Bangladesh. Veterinarians enrolled goats showing signs consistent with PPR, including diarrhoea, fever and respiratory distress, from three veterinary hospitals. Post-treatment follow up was carried out to ascertain health outcomes of the goats. Faecal and throat swab samples were collected from the goats and tested for PPRV RNA using real-time reverse transcription polymerase chain reaction (rRT-PCR). Nucleotide sequence-based phylogenetic analyses of two structural genes, the nucleocapsid (N gene), and the haemagglutinin (H gene) were studied to determine the genetic variations of PPRV strains. Of the 539 goats enrolled, 38% (203/539) had detectable RNA for PPRV. We were able to follow up with 91% (184/203) of the PPRV infected goats; 44 of them died (24%). PPRV was more frequently identified in the summer (45%) than in the rainy season (29%) (Odds ratio = 1.9, 95% confidence interval: 1.3–3.1). Bangladeshi strains were phylogenetically similar to the lineage IV PPRV strains; showing particularly strong affiliation with Tibetan and Indian strains. PPR is a common viral infection of the goats in Bangladesh, with a high case-fatality rate. This study confirms the circulation of lineage IV PPRV in the country with unique amino acid substitutions in N and H proteins and provides baseline data for vaccine development and implementation
- …
