47 research outputs found

    Salinity can change the lipid composition of adult Chinese mitten crab after long-term salinity adaptation

    Get PDF
    The Chinese mitten crab (Eriocheir sinensis) is an euryhaline crustacean, whose adults migrate downstream to estuaries for reproduction. Lipids are believed to be involved in salinity adaptation during migration. This study investigated the effects of different salinities (0, 6, 12, and 18‰) on the total lipids, neutral lipids, and polar lipids contents, and fatty acid profiles in the gonads, hepatopancreas, and muscles of adult E. sinensis after 40 days of salinity adaptation. The results showed that the males and females from 12‰ treatment had the highest contents of total lipids and neutral lipids in their hepatopancreas and total lipids in the muscles. Notably, salinity had a greater effect on the fatty acid profiles in the hepatopancreas compared to that in the gonads and muscles. The male hepatopancreas treated with 18‰ salinity had the highest percentage of total n-6 polyunsaturated fatty acid (∑n-6PUFA) in both neutral lipids and polar lipids, while the percentage of total n-3 polyunsaturated fatty acid (∑n-3PUFA) in neutral lipids and polar lipids decreased significantly with increasing salinity in males. In females, the 0‰ treatment had the highest percentages of total saturated fatty acids in neutral lipids and polar lipids in the hepatopancreas, while the highest ∑n-3PUFA and ∑n-6PUFA in neutral lipids and polar lipids were detected in the 12‰ treatment group. In conclusion, brackish water could promote the accumulations of total lipids and neutral lipids in the hepatopancreas and change the fatty acid profiles of adult E. sinensis, particularly in the hepatopancreas after long-term salinity adaptation

    Detection of the dominant pathogens in diarrheal calves of Ningxia, China in 2021–2022

    Get PDF
    IntroductionCalf diarrhea is a complex disease that has long been an unsolved problem in the cattle industry. Ningxia is at the forefront of China in the scale of cattle breeding, and calf diarrhea gravely restricts the development of Ningxia's cattle industry.MethodsFrom July 2021 to May 2022, we collected diarrhea stool samples from calves aged 1–103 days from 23 farms in five cities in Ningxia, and performed PCR using specific primers for 15 major reported pathogens of calf diarrhea, including bacteria, viruses, and parasites. The effect of different seasons on the occurrence of diarrhea in calves was explored, the respective epidemic pathogens in different seasons were screened, and more detailed epidemiological investigations were carried out in Yinchuan and Wuzhong. In addition, we analyzed the relationship between different ages, river distributions and pathogen prevalence.ResultsEventually, 10 pathogens were detected, of which 9 pathogens were pathogenic and 1 pathogen was non-pathogenic. The pathogens with the highest detection rate were Cryptosporidium (50.46%), Bovine rotavirus (BRV) (23.18%), Escherichia coli (E. coli) K99 (20.00%), and Bovine coronavirus (BCoV) (11.82%). The remaining pathogens such as Coccidia (6.90%), Bovine Astrovirus (BoAstV) (5.46%), Bovine Torovirus (BToV) (4.09%), and Bovine Kobuvirus (BKoV) (3.18%) primarily existed in the form of mixed infection.DiscussionThe analysis showed that different cities in Ningxia have different pathogens responsible for diarrhea, with Cryptosporidium and BRV being the most important pathogens responsible for diarrhea in calves in all cities. Control measures against those pathogens should be enforced to effectively prevent diarrhea in calves in China

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Robust constrained fault-tolerant attitude control for flexible spacecraft

    Full text link
    In this paper, robust constrained fault-tolerant attitude controllers are proposed for flexible spacecraft subjected to external disturbance, model uncertainty, input saturation, and actuator faults. Three types of actuator faults of spacecraft, i.e. partial loss of effectiveness, stuck fault, and outage fault, are modeled explicitly. To handle these actuator faults, a significant lemma is proposed and rigorous proof is conducted at length. By introducing two e-modification parameter update laws to online estimate the unknown parameters caused by actuator faults, constrained fault-tolerant attitude controllers of flexible spacecraft are designed to accommodate these faults without the need of any prior information about these faults. The proposed controllers can achieve the disturbance attenuation in the sense of [Formula: see text] gain. The effectiveness of the proposed algorithms is assessed through numerical simulations. </jats:p

    Identification of multiple inputs single output errors-in-variables system using cumulant

    No full text

    Dynamic Analysis of High Dynamic GNSS Signal Based on PMF-FFT

    No full text
    corecore