206 research outputs found
Mid-J CO Emission From NGC 891: Microturbulent Molecular Shocks in Normal Star Forming Galaxies
We have detected the CO(6-5), CO(7-6), and [CI] 370 micron lines from the
nuclear region of NGC 891 with our submillimeter grating spectrometer ZEUS on
the CSO. These lines provide constraints on photodissociation region (PDR) and
shock models that have been invoked to explain the H_2 S(0), S(1), and S(2)
lines observed with Spitzer. We analyze our data together with the H_2 lines,
CO(3-2), and IR continuum from the literature using a combined PDR/shock model.
We find that the mid-J CO originates almost entirely from shock-excited warm
molecular gas; contributions from PDRs are negligible. Also, almost all the H_2
S(2) and half of the S(1) line is predicted to emerge from shocks. Shocks with
a pre-shock density of 2x10^4 cm^-3 and velocities of 10 km/s and 20 km/s for
C-shocks and J-shocks, respectively, provide the best fit. In contrast, the
[CI] line emission arises exclusively from the PDR component, which is best
parameterized by a density of 3.2x10^3 cm^-3 and a FUV field of G_o = 100 for
both PDR/shock-type combinations. Our mid-J CO observations show that
turbulence is a very important heating source in molecular clouds, even in
normal quiescent galaxies. The most likely energy sources for the shocks are
supernovae or outflows from YSOs. The energetics of these shock sources favor
C-shock excitation of the lines.Comment: 18 pages, 2 figures, 6 tables, accepted by Ap
A quasioptical steering system for the CCAT/XSPEC submillimeter multi-object spectrometer
A two arm, opto-mechanical positioner mechanism is presented in this proceedings as a candidate steering system for the millimeter-wave XSPEC spectrograph. The design is well matched to the expected target density on the sky, and meeting all requirements of the Cerro Chajnantor Atacama Telescope (CCAT), site environmental conditions (e.g., operating temperature and power dissipation), and the positioning requirements themselves for acquiring and tracking astronomical objects whose light is fed into the XSPEC spectrograph units. The prototype design has been fabricated and tested for basic operations
Save Them Before They Fall\u27: Cordelia Throop Cole and the WCTU\u27s Social Purity Movement
Strong C+ emission in galaxies at z~1-2: Evidence for cold flow accretion powered star formation in the early Universe
We have recently detected the [CII] 157.7 micron line in eight star forming
galaxies at redshifts 1 to 2 using the redshift(z) Early Universe Spectrometer
(ZEUS). Our sample targets star formation dominant sources detected in PAH
emission. This represents a significant addition to [CII] observations during
the epoch of peak star formation. We have augmented this survey with
observations of the [OI] 63 micron line and far infrared photometry from the
PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the
literature showing PAH features. Our sources exhibit above average gas heating
efficiency, many with both [OI]/FIR and [CII]/FIR ~1% or more. The relatively
strong [CII] emission is consistent with our sources being dominated by star
formation powered PDRs, extending to kpc scales. We suggest that the star
formation mode in these systems follows a Schmidt-Kennicutt law similar to
local systems, but at a much higher rate due to molecular gas surface densities
10 to 100 times that of local star forming systems. The source of the high
molecular gas surface densities may be the infall of neutral gas from the
cosmic web. In addition to the high [CII]/FIR values, we also find high
[CII]/PAH ratios and, in at least one source, a cool dust temperature. This
source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions
of Stephan's Quintet, suggesting that another mode of [CII] excitation in
addition to normal photoelectric heating may be contributing to the observed
[CII] line.Comment: Accepted for publication in Astrophysical Journal. To appear in
December 20, 2014, V797 - 2 issu
CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses
We present the detection of four far-infrared fine-structure oxygen lines, as
well as strong upper limits for the CO(2-1) and [N II] 205 um lines, in 3C 368,
a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in
conjunction with previously observed neon and carbon fine-structure lines,
suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and
extended star formation. A starburst dominated by O8 stars, with an age of ~6.5
Myr, provides a good fit to the fine-structure line data. This estimated age of
the starburst makes it nearly concurrent with the latest episode of AGN
activity, suggesting a link between the growth of the supermassive black hole
and stellar population in this source. We do not detect the CO(2-1) line, down
to a level twelve times lower than the expected value for star forming
galaxies. This lack of CO line emission is consistent with recent star
formation activity if the star-forming molecular gas has low metallicity, is
highly fractionated (such that CO is photodissociated through much of the
clouds), or is chemically very young (such that CO has not yet had time to
form). It is also possible, though we argue unlikely, that the ensemble of fine
structure lines are emitted from the region heated by the AGN.Comment: 10 pages, 4 figures, 2 tables, accepted for publication in the
Astrophysical Journa
Constraining the ISM Properties of the Cloverleaf Quasar Host Galaxy with Herschel Spectroscopy
We present Herschel observations of the far-infrared (FIR) fine-structure (FS) lines [C II]158 μm, [O I]63 μm, [O III]52 μm, and [Si II]35 μm in the z = 2.56 Cloverleaf quasar, and combine them with published data in an analysis of the dense interstellar medium (ISM) in this system. Observed [C II]158 μm, [O I]63 μm, and FIR continuum flux ratios are reproduced with photodissociation region (PDR) models characterized by moderate far-ultraviolet (FUV) radiation fields with G_0 = 0.3–1 × 10^3 and atomic gas densities n_H = 3–5 × 10^3 cm^(−3), depending on contributions to [C II]158 μm from ionized gas. We assess the contribution to the [C II]158 μm flux from an active galactic nucleus (AGN) narrow line region (NLR) using ground-based measurements of the [N II]122 μm transition, finding that the NLR can contribute at most 20%–30% of the observed [C II]158 μm flux. The PDR density and far-UV radiation fields inferred from the atomic lines are not consistent with the CO emission, indicating that the molecular gas excitation is not solely provided via UV heating from local star formation (SF), but requires an additional heating source. X-ray heating from the AGN is explored, and we find that X-ray-dominated region (XDR) models, in combination with PDR models, can match the CO cooling without overproducing the observed FS line emission. While this XDR/PDR solution is favored given the evidence for both X-rays and SF in the Cloverleaf, we also investigate alternatives for the warm molecular gas, finding that either mechanical heating via low-velocity shocks or an enhanced cosmic-ray ionization rate may also contribute. Finally, we include upper limits on two other measurements attempted in the Herschel program: [C II]158 μm in FSC 10214 and [O I]63 μm in APM 08279+5255
Band-9 ALMA Observations of the [N II] 122 μm Line and FIR Continuum in Two High-z Galaxies
We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z_1 ~ 2.8 and the Cloverleaf QSO at z_1 ~ 2.5) in their rest-frame 122 μm continuum (νsky ~ 650 GHz, λsky ~ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ~0."25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (~1000 M_⊙ yr^(−1)) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems
Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220
We present the results of interferometric spectral line observations of Arp
220 at 3.5mm and 1.2mm from the Plateau de Bure Interferometer (PdBI), imaging
the two nuclear disks in HCN and , HCO and , and HNC as well as SiO and , HCN, and SO. The gas traced by SiO
has a complex and extended kinematic signature including a prominent P Cygni
profile, almost identical to previous observations of HCO. Spatial
offsets north and south of the continuum centre in the emission and
absorption of the SiO P Cygni profile in the western nucleus (WN)
imply a bipolar outflow, delineating the northern and southern edges of its
disk and suggesting a disk radius of pc, consistent with that found by
ALMA observations of Arp 220. We address the blending of SiO and
HCO by considering two limiting cases with regards to the
HCO emission throughout our analysis. Large velocity gradient (LVG)
modelling is used to constrain the physical conditions of the gas and to infer
abundance ratios in the two nuclei. Our most conservative lower limit on the
[HCN]/[HCO] abundance ratio is 11 in the WN, cf. 0.10 in the
eastern nucleus (EN). Comparing these ratios to the literature we argue on
chemical grounds for an energetically significant AGN in the WN driving either
X-ray or shock chemistry, and a dominant starburst in the EN.Comment: 28 pages, 17 figures, accepted to Ap
[CII] At 1 < z < 2: Observing Star Formation in the Early Universe with Zeus (1 and 2)
We report the detection of the [CII] 158 micron fine structure line from six submillimeter galaxies with redshifts between 1.12 and 1.73. This more than doubles the total number of [CII] 158 micron detections reported from high redshift sources. These observations were made with the Redshift(z) and Early Universe Spectrometer(ZEUS) at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii between December 2006 and March 2009. ZEUS is a background limited submm echelle grating spectrometer (Hailey-Dunsheath 2009). Currently we are constructing ZEUS-2. This new instrument will utilize the same grating but will feature a two dimensional transition-edge sensed bolometer array with SQUID multiplexing readout system enabling simultaneous background limited observations in the 200, 340,450 and 650 micron telluric windows. ZEUS-2 will allow for long slit imaging spectroscopy in nearby galaxies and a [CII] survey from z 0.25 to 2.5
- …
