222 research outputs found
Molecular Line Observations of Infrared Dark Clouds: Seeking the Precursors to Intermediate and Massive Star Formation
We have identified 41 infrared dark clouds from the 8 micron maps of the
Midcourse Space Experiment (MSX), selected to be found within one square degree
areas centered on known ultracompact HII regions. We have mapped these infrared
dark clouds in N2H+(1-0), CS(2-1) and C18O(1-0) emission using the Five College
Radio Astronomy Observatory. The maps of the different species often show
striking differences in morphologies, indicating differences in evolutionary
state and/or the presence of undetected, deeply embedded protostars. We derive
an average mass for these clouds using N2H+ column densities of ~2500 solar
masses, a value comparable to that found in previous studies of high mass star
forming cores using other mass tracers. The linewidths of these clouds are
typically ~2.0 - 2.9 km/s. Based on the fact that they are dark at 8 micron,
compact, massive, and have large velocity dispersions, we suggest that these
clouds may be the precursor sites of intermediate and high mass star formation.Comment: Accepted to ApJS, 22 pages, 10 pages of figures. For full-resolution
images, see http://www.astro.lsa.umich.edu/~seragan/pubs/fcrao/figures.tar.g
Generic framework for meso-scale assessment of climate change hazards in coastal environments
Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.This work was supportedby the Economic and Social Research Council [Grant Number ES/L01632X/1] and is part of the Nexus Network Initiative. WJS is funded by Arcadia
Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats
This is the final version. Available on open access from Oxford University Press via the DOI in this record• Background and Aims: Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. • Methods: Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa x B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. • Key Results: The demographic vital rates (i.e. For major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. Rapa with B. napus. • Conclusions: Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. Rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.Biotechnology and Biological Sciences Research Council (BBSRC)Natural Environment Research Council (NERC
Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure
In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk. A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge. The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold. Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species. Synthesis and applications.Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants. © 2011 The Authors. Journal of Applied Ecology © 2011 British Ecological Society
When Loss is More: From Managed Decline to Adaptive Release
This is the final version. Available on open access from Routledge via the DOI in this recordWithin the heritage sector there is widespread recognition that the accelerating effects of climate and other changes will necessitate reconsideration of the care of at-risk places and properties. Heritage organisations and agencies are developing new ways to identify and measure future threats, and to prioritise resources accordingly. For some designated assets, it is becoming clear, it may be necessary to manage processes of decline and transformation. Drawing on insights gathered from conversations with natural and historic environment practitioners and regulators, this paper highlights current practice and policy around managed decline, with a focus on the English context. In seeking to address some of the limitations of current approaches, this paper introduces a new conceptual framework: adaptive release. Adaptive release, as presented here, reflects a decision to accommodate the dynamic transformation of a heritage asset and its associated values and significance, with reference to wider landscape settings. The focus is on iterative management over extended timeframes, involving some relinquishment of control and a commitment to ongoing monitoring and interpretation. The concept of adaptive release is presented provisionally, rather than prescriptively, to expand the range of options available to natural and historic environment professionals in responding to inevitable change.Arts and Humanities Research Council (AHRC
Human‐mediated dispersal and disturbance shape the metapopulation dynamics of a long‐lived herb
As anthropogenic impacts on the natural world escalate, there is increasing interest in the role of humans in dispersing seeds. But the consequences of this Human‐Mediated Dispersal (HMD) on plant spatial dynamics are little studied. In this paper, we ask how secondary dispersal by HMD affects the dynamics of a natural plant metapopulation. In addition to dispersal between patches, we suggest within‐patch processes can be critical. To address this, we assess how variation in local population dynamics, caused by small‐scale disturbances, affects metapopulation size. We created an empirically based model with stochastic population dynamics and dispersal among patches, which represented a real‐world, cliff‐top metapopulation of wild cabbage Brassica oleracea. We collected demographic data from multiple populations by tagging plants over eight years. We assessed seed survival, and establishment and survival of seedlings in intact vegetation vs. small disturbances. We modeled primary dispersal by wind using field data and used experimental data on secondary HMD by hikers. We monitored occupancy patterns over a 14‐yr period in the real metapopulation. Disturbance had large effects on local population growth rates, by increasing seedling establishment and survival. This meant that the modeled metapopulation grew in size only when the area disturbed in each patch was above 35%. In these growing metapopulations, although only 0.2% of seeds underwent HMD, this greatly enhanced metapopulation growth rates. Similarly, HMD allowed more colonizations in declining metapopulations under low disturbance, and this slowed the rate of decline. The real metapopulation showed patterns of varying patch occupancy over the survey years, which were related to habitat quality, but also positively to human activity along the cliffs, hinting at beneficial effects of humans. These findings illustrate that realistic changes to dispersal or demography, specifically by humans, can have fundamental effects on the viability of a species at the landscape scale
Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure
In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk.A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge.The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold.Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species.Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants
Crisis care for children and young people with mental health problems: national mapping, models of delivery, sustainability and experience (CAMH-Crisis2). A study protocol.
Background One in six five 16-year-olds have a probable mental health difficulty. Of these, almost half of older teenagers and a quarter of 11–16-year-olds report having self-harmed or attempted suicide. Currently, there is little research into mental health crisis services for young people, with little understanding of what services exist, who uses them, or what works best. Question ‘How are mental health crisis responses for children and young people up to the age of 25 sustained, experienced and integrated within their local systems of services’? Objectives To describe National Health Service (NHS), local authority, education and third sector approaches to the implementation and organisation of crisis care for children and young people across England and Wales.To identify eight contrasting case studies in which to evaluate how crisis services have developed and are currently organised, sustained, experienced and integrated within the context of their local systems of services.To compare and contrast these services in the context of the available international evidence, drawing out and disseminating clear implications for the design and delivery of future crisis responses for children and young people and their families. Methods A sequential mixed methods approach, underpinned by normalisation process theory will be employed. A survey will create a detailed record of how crisis responses across England and Wales are organised, implemented and used. Subsequently, eight contrasting services in relation to geographic and socioeconomic setting, populations served, and service configuration will be identified as case studies. Interviews will be conducted with children, young people and parents/carers who have used the service, as well as commissioners, managers and practitioners. Operational policies and service usage data will also be examined. Analysis of how each service is provided, experienced, implemented and sustained will be conducted both inductively and deductively, reflecting normalisation process theory constructs.</ns4:p
Recommended from our members
Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment
Biocontainment methods for genetically modified crops closest to commercial reality (chloroplast transformation, male sterility) would be compromised (in absolute terms) by seed-mediated gene flow leading to chloroplast capture. Even in these circumstances, however, it can be argued that biocontainment still represses transgene movement, with the efficacy depending on the relative frequency of seed-and pollen-mediated gene flow. In this study, we screened for crop-specific chloroplast markers from rapeseed (Brassica napus) amongst sympatric and allopatric populations of wild B. oleracea in natural cliff-top populations and B. rapa in riverside and weedy populations. We found only modest crop chloroplast presence in wild B. oleracea and in weedy B. rapa, but a surprisingly high incidence in sympatric (but not in allopatric) riverside B. rapa populations. Chloroplast inheritance models indicate that elevated crop chloroplast acquisition is best explained if crop cytoplasm confers selective advantage in riverside B. rapa populations. Our results therefore imply that chloroplast transformation may slow transgene recruitment in two settings, but actually accelerate transgene spread in a third. This finding suggests that the appropriateness of chloroplast transformation for biocontainment policy depends on both context and geographical location
- …
