1,072 research outputs found

    Modelling the Self-similarity in Complex Networks Based on Coulomb's Law

    Full text link
    Recently, self-similarity of complex networks have attracted much attention. Fractal dimension of complex network is an open issue. Hub repulsion plays an important role in fractal topologies. This paper models the repulsion among the nodes in the complex networks in calculation of the fractal dimension of the networks. The Coulomb's law is adopted to represent the repulse between two nodes of the network quantitatively. A new method to calculate the fractal dimension of complex networks is proposed. The Sierpinski triangle network and some real complex networks are investigated. The results are illustrated to show that the new model of self-similarity of complex networks is reasonable and efficient.Comment: 25 pages, 11 figure

    Multi-fractal analysis of weighted networks

    Full text link
    In many real complex networks, the fractal and self-similarity properties have been found. The fractal dimension is a useful method to describe fractal property of complex networks. Fractal analysis is inadequate if only taking one fractal dimension to study complex networks. In this case, multifractal analysis of complex networks are concerned. However, multifractal dimension of weighted networks are less involved. In this paper, multifractal dimension of weighted networks is proposed based on box-covering algorithm for fractal dimension of weighted networks (BCANw). The proposed method is applied to calculate the fractal dimensions of some real networks. Our numerical results indicate that the proposed method is efficient for analysis fractal property of weighted networks

    有機-無機ハイブリッド材料に基づく新規吸着剤によるセシウム吸着

    Get PDF
    新潟大学Niigata University博士(工学)新大院博(工)第551号doctoral thesi

    Single-cell photoacoustic thermometry

    Get PDF
    A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community

    Towards Efficient and Effective Deep Clustering with Dynamic Grouping and Prototype Aggregation

    Full text link
    Previous contrastive deep clustering methods mostly focus on instance-level information while overlooking the member relationship within groups/clusters, which may significantly undermine their representation learning and clustering capability. Recently, some group-contrastive methods have been developed, which, however, typically rely on the samples of the entire dataset to obtain pseudo labels and lack the ability to efficiently update the group assignments in a batch-wise manner. To tackle these critical issues, we present a novel end-to-end deep clustering framework with dynamic grouping and prototype aggregation, termed as DigPro. Specifically, the proposed dynamic grouping extends contrastive learning from instance-level to group-level, which is effective and efficient for timely updating groups. Meanwhile, we perform contrastive learning on prototypes in a spherical feature space, termed as prototype aggregation, which aims to maximize the inter-cluster distance. Notably, with an expectation-maximization framework, DigPro simultaneously takes advantage of compact intra-cluster connections, well-separated clusters, and efficient group updating during the self-supervised training. Extensive experiments on six image benchmarks demonstrate the superior performance of our approach over the state-of-the-art. Code is available at https://github.com/Regan-Zhang/DigPro

    Physically Interpretable Feature Learning and Inverse Design of Supercritical Airfoils

    Full text link
    Machine-learning models have demonstrated a great ability to learn complex patterns and make predictions. In high-dimensional nonlinear problems of fluid dynamics, data representation often greatly affects the performance and interpretability of machine learning algorithms. With the increasing application of machine learning in fluid dynamics studies, the need for physically explainable models continues to grow. This paper proposes a feature learning algorithm based on variational autoencoders, which is able to assign physical features to some latent variables of the variational autoencoder. In addition, it is theoretically proved that the remaining latent variables are independent of the physical features. The proposed algorithm is trained to include shock wave features in its latent variables for the reconstruction of supercritical pressure distributions. The reconstruction accuracy and physical interpretability are also compared with those of other variational autoencoders. Then, the proposed algorithm is used for the inverse design of supercritical airfoils, which enables the generation of airfoil geometries based on physical features rather than the complete pressure distributions. It also demonstrates the ability to manipulate certain pressure distribution features of the airfoil without changing the others

    Study of transfer learning from 2D supercritical airfoils to 3D transonic swept wings

    Full text link
    Machine learning has been widely utilized in fluid mechanics studies and aerodynamic optimizations. However, most applications, especially flow field modeling and inverse design, involve two-dimensional flows and geometries. The dimensionality of three-dimensional problems is so high that it is too difficult and expensive to prepare sufficient samples. Therefore, transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for three-dimensional problems. This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings, where the simple swept theory is embedded to improve the prediction accuracy. Two baseline models for transfer learning are investigated: one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry, and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution. Two transfer learning strategies are compared for both baseline models. The transferred models are then tested on the prediction of complete wings. The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions. Compared to the two baseline models, the transferred models reduce the prediction error by 60% and 80%, respectively
    corecore