622 research outputs found
Renormalization of Lorentz violating theories
We classify the unitary, renormalizable, Lorentz violating quantum field
theories of interacting scalars and fermions, obtained improving the behavior
of Feynman diagrams by means of higher space derivatives. Higher time
derivatives are not generated by renormalization. Renormalizability is ensured
by a "weighted power counting" criterion. The theories contain a dimensionful
parameter, yet a set of models are classically invariant under a weighted scale
transformation, which is anomalous at the quantum level. Formulas for the
weighted trace anomaly are derived. The renormalization-group properties are
studied.Comment: 28 pages, 1 figure; v2: more references and applications, PRD versio
Recommended from our members
Diffusion and migration in polymer electrolytes
Mixtures of neutral polymers and lithium salts have the potential to serve as electrolytes in next-generation rechargeable Li-ion batteries. The purpose of this review is to expose the delicate interplay between polymer-salt interactions at the segmental level and macroscopic ion transport at the battery level. Since complete characterization of this interplay has only been completed in one system: mixtures of poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI), we focus on data obtained from this system. We begin with a discussion of the activity coefficient, followed by a discussion of six different diffusion coefficients: the Rouse motion of polymer segments is quantified by Dseg, the self-diffusion of cations and anions is quantified by Dself,+ and Dself,−, and the build-up of concentration gradients in electrolytes under an applied potential is quantified by Stefan-Maxwell diffusion coefficients, D0+, D0-, and D+-. The Stefan-Maxwell diffusion coefficients can be used to predict the velocities of the ions at very early times after an electric field is applied across the electrolyte. The surprising result is that D0- is negative in certain concentration windows. A consequence of this finding is that at these concentrations, both cations and anions are predicted to migrate toward the positive electrode at early times. We describe the controversies that surround this result. Knowledge of the Stefan-Maxwell diffusion coefficients enable prediction of the limiting current. We argue that the limiting current is the most important characteristic of an electrolyte. Excellent agreement between theoretical and experimental limiting current is seen in PEO/LiTFSI mixtures. What sequence of monomers that, when polymerized, will lead to the highest limiting current remains an important unanswered question. It is our hope that the approach presented in this review will guide the development of such polymers
Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot.
We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g. Li and P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic Li and P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO; (2) paramagnetic O VT-NMR of the solid oxide fuel cell cathode material LaNiO; (3) broadband Nb static NMR of the Li-ion battery material BNbO; and (4) broadband static I NMR of a potential Li-air battery product LiIO. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 655444 (O.P.). D.M.H. acknowledges funding from the Cambridge Commonwealth Trusts. J.L. gratefully acknowledges Trinity College, Cambridge (UK) for funding. K.J.G. gratefully acknowledges funding from the Winston Churchill Foundation of the United States and the Herchel Smith Scholarship. M.B. is the CEO of NMR Service GmbH (Erfurt, Germany), which manufactures the eATM device; M.B. acknowledges funding of the Central Innovation Programme for small and medium-sized enterprises (SMEs; Zentrales Innovationsprogramm Mittelstand, ZIM) of the German Federal Ministry of Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie, BMWi) under the Grant No. KF 2845501UWF. DFT calculations were performed on (1) the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council and (2) the Center for Functional Nanomaterials cluster, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886
Renormalizable acausal theories of classical gravity coupled with interacting quantum fields
We prove the renormalizability of various theories of classical gravity
coupled with interacting quantum fields. The models contain vertices with
dimensionality greater than four, a finite number of matter operators and a
finite or reduced number of independent couplings. An interesting class of
models is obtained from ordinary power-counting renormalizable theories,
letting the couplings depend on the scalar curvature R of spacetime. The
divergences are removed without introducing higher-derivative kinetic terms in
the gravitational sector. The metric tensor has a non-trivial running, even if
it is not quantized. The results are proved applying a certain map that
converts classical instabilities, due to higher derivatives, into classical
violations of causality, whose effects become observable at sufficiently high
energies. We study acausal Einstein-Yang-Mills theory with an R-dependent gauge
coupling in detail. We derive all-order formulas for the beta functions of the
dimensionality-six gravitational vertices induced by renormalization. Such beta
functions are related to the trace-anomaly coefficients of the matter
subsector.Comment: 36 pages; v2: CQG proof-corrected versio
An Anesthesiologist, A Brain Surgeon, and a Nurse Walk into a Bar... : A Call for Change in How America Handles Health Care Worker Substance Abuse
THE IMPACT OF UNDERGRADUATE MATHEMATICS COURSES ON COLLEGE STUDENT’S GEOMETRIC REASONING STAGES
The purpose of this study is to investigate possible effects of different college level mathematics courses on college students’ van Hiele levels of geometric understanding. Particularly, since logical reasoning is an important aspect of geometric understanding, it would be interesting to see whether there are differences in van Hiele levels of students who have taken non-geometry courses that emphasize or focus on logic and proofs (Category I) and those that don’t (Category II). We compared geometric reasoning stages of students from the two categories. One hundred and forty nine college students taking various courses from the two categories have been involved in this study. The Van Hiele Geometry Test designed to find out students’ van Hiele levels was used to collect data. After the collection and analysis of the quantitative data, the participants’ van Hiele levels are reported and the reasoning stages of two groups are compared. The results show that students taking logic/proof based courses attain higher reasoning stages than students taking other college level mathematics courses, such as calculus. The results may have implications that are of particular interest to teacher education programs. Finally, the results also confirm a previous assertion about correlation between van Hiele levels and proof writing
Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes
Bacterial pneumonia associated with multidrug-resistant Gram-negative pathogens: Understanding epidemiology, resistance patterns, and implications with COVID-19
The ongoing spread of antimicrobial resistance has complicated the treatment of bacterial hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). Gram-negative pathogens, especially those with multidrug-resistant profiles, including Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Pseudomonas aeruginosa, and Acinetobacter spp., are an important culprit in this type of infections. Understanding the determinants of resistance in pathogens causing pneumonia is ultimately stressing, especially in the shadows of the COVID-19 pandemic, when bacterial lung infections are considered a top priority that has become urgent to revise. Globally, the increasing prevalence of these pathogens in respiratory samples represents a significant infection challenge, with major limitations of treatment options and poor clinical outcomes. This review will focus on the epidemiology of HAP and VAP and will present the roles and the antimicrobial resistance patterns of implicated multidrug-resistant (MDR) Gram-negative pathogens like carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA), carbapenem-resistant Enterobacterales (CRE), as well as colistin-resistant Gram-negative pathogens and extended-spectrum β-lactamase (ESBL)-producing Enterobacterales. While emerging from the COVID-19 pandemic, perspectives and conclusions are drawn from findings of HAP and VAP caused by MDR Gram-negative bacteria in patients with COVID-19
The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens
The serious challenge of antimicrobial resistance continues to threaten public health and lingers in the era of the coronavirus disease 2019 (COVID-19), declared pandemic by the World Health Organization. While the pandemic has triggered the importance of infection control practices and preventive measures such as physical distancing, hand hygiene, travel reduction and quarantine, the ongoing alarm of antimicrobial resistance seems to accompany the pandemic too. Antimicrobial resistance has been fostered during COVID-19, possibly due to high rate of empirical antibiotic utilization in COVID-19 patients, increased use of biocides, and the disruption of proper healthcare for other conditions. Specifically, carbapenemase-producing Gram-negative bacteria have shown to cause secondary bacterial infections in patients hospitalized for COVID-19. Clinical and microbiological evidence of such infections is accumulating in different parts of the world. With the resilient nature of carbapenemases, their association with mortality, and the limited treatment options available, concerns regarding this group of antibiotic-hydrolyzing enzymes during the pandemic are expected to upsurge. While the additional burden carbapenemases exert on healthcare is worrisome, it remains hidden or abandoned among the various health consequences of the pandemic. The purpose of this minireview is to shed a light on carbapenemase-associated infections during such unprecedented time of COVID-19. A focused insight shall be made into carbapenemases, their implications for COVID-19 patients, and the features and consequences of co-infection, with a review of available evidence from pertinent literature. The importance of increased surveillance for carbapenemase-producers and optimizing their management in relation to the pandemic, shall be addressed as well
- …
