1,829 research outputs found
Exploring modality switching effects in negated sentences: further evidence for grounded representations
Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009) suggest that modality specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud) after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart) compared to the same modality (e.g., LEAVES-rustling, Pecher et al., 2003). Similarly, modality switching costs lead to a modulation of the N400 effect in event-related potentials (ERPs; Collins et al., 2011; Hald et al., 2011). This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald et al., 2011). The current ERP study further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing “not”). Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation
NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator
Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development
Switching modalities in a sentence verification task: ERP evidence for embodied language processing
In an event related potential (ERP) experiment using written language materials only, we investigated a potential modulation of the N400 by the modality switch effect. The modality switch effect occurs when a first sentence, describing a fact grounded in one modality, is followed by a second sentence describing a second fact grounded in a different modality. For example, "A cellar is dark" (visual), was preceded by either another visual property "Ham is pink" or by a tactile property "A mitten is soft." We also investigated whether the modality switch effect occurs for false sentences ("A cellar is light"). We found that, for true sentences, the ERP at the critical word "dark" elicited a significantly greater frontal, early N400-like effect (270370 ms) when there was a modality mismatch than when there was a modality-match. This pattern was not found for the critical word "light" in false sentences. Results similar to the frontal negativity were obtained in a late time window (500700 ms). The obtained ERP effect is similar to one previously obtained for pictures. We conclude that in this paradigm we obtained fast access to conceptual properties for modality-matched pairs, which leads to embodiment effects similar to those previously obtained with pictorial stimuli
Improving the entanglement transfer from continuous variable systems to localized qubits using non Gaussian states
We investigate the entanglement transfer from a bipartite continuous-variable
(CV) system to a pair of localized qubits assuming that each CV mode couples to
one qubit via the off-resonance Jaynes-Cummings interaction with different
interaction times for the two subsystems. First, we consider the case of the CV
system prepared in a Bell-like superposition and investigate the conditions for
maximum entanglement transfer. Then we analyze the general case of two-mode CV
states that can be represented by a Schmidt decomposition in the Fock number
basis. This class includes both Gaussian and non Gaussian CV states, as for
example twin-beam (TWB) and pair-coherent (TMC, also known as two-mode-coher
ent) states respectively. Under resonance conditions, equal interaction times
for both qubits and different initial preparations, we find that the
entanglement transfer is more efficient for TMC than for TWB states. In the
perspective of applications such as in cavity QED or with superconducting
qubits, we analyze in details the effects of off-resonance interactions
(detuning) and different interaction times for the two qubits, and discuss
conditions to preserve the entanglement transfer.Comment: revised version, 11 pages, 7 figures (few of them low-res
An ERP study of anaphor resolution with focused and non-focused antecedents
The goal of this study is to better understand when (and why) the combination of semantic overlap between antecedent and anaphor and antecedent focus leads to difficulty in anaphor processing. To investigate these questions, three ERP experiments manipulating semantic overlap and focus compared the ERPs from the onset of the anaphor as well as from the onset of the last word in the sentence containing the anaphor. Our results suggest that although the focus status of an antecedent and the semantic overlap between the antecedent and anaphor are important, these factors are not the only significant contributors to online anaphor resolution. Factors such as readers‘ expectations about thematic shifts also influence the processing. We consider our results in relation to two accounts of anaphor resolution, the Informational Load Hypothesis (Almor, 1999; Almor & Eimas, 2008) and JANUS (Garnham & Cowles, 2008)
Polarization squeezing with cold atoms
We study the interaction of a nearly resonant linearly polarized laser beam
with a cloud of cold cesium atoms in a high finesse optical cavity. We show
theoretically and experimentally that the cross-Kerr effect due to the
saturation of the optical transition produces quadrature squeezing on both the
mean field and the orthogonally polarized vacuum mode. An interpretation of
this vacuum squeezing as polarization squeezing is given and a method for
measuring quantum Stokes parameters for weak beams via a local oscillator is
developed
Positive P simulations of spin squeezing in a two-component Bose condensate
The collisional interaction in a Bose condensate represents a non-linearity
which in analogy with non-linear optics gives rise to unique quantum features.
In this paper we apply a Monte Carlo method based on the positive P
pseudo-probability distribution from quantum optics to analyze the efficiency
of spin squeezing by collisions in a two-component condensate. The squeezing
can be controlled by choosing appropiate collision parameters or by
manipulating the motional states of the two components.Comment: 5 pages, 2 figures. Submitted to Phys. Rev.
Three-dimensional theory for interaction between atomic ensembles and free-space light
Atomic ensembles have shown to be a promising candidate for implementations
of quantum information processing by many recently-discovered schemes. All
these schemes are based on the interaction between optical beams and atomic
ensembles. For description of these interactions, one assumed either a
cavity-QED model or a one-dimensional light propagation model, which is still
inadequate for a full prediction and understanding of most of the current
experimental efforts which are actually taken in the three-dimensional free
space. Here, we propose a perturbative theory to describe the three-dimensional
effects in interaction between atomic ensembles and free-space light with a
level configuration important for several applications. The calculations reveal
some significant effects which are not known before from the other approaches,
such as the inherent mode-mismatching noise and the optimal mode-matching
conditions. The three-dimensional theory confirms the collective enhancement of
the signal-to-noise ratio which is believed to be one of the main advantage of
the ensemble-based quantum information processing schemes, however, it also
shows that this enhancement need to be understood in a more subtle way with an
appropriate mode matching method.Comment: 16 pages, 9 figure
- …
