3,312 research outputs found
On Models with Inverse-Square Exchange
A one-dimensional quantum N-body system of either fermions or bosons with
colors interacting via inverse-square exchange is presented in this
article. A class of eigenstates of both the continuum and lattice version of
the model Hamiltonians is constructed in terms of the Jastrow-product type wave
function. The class of states we construct in this paper corresponds to the
ground state and the low energy excitations of the model that can be described
by the effective harmonic fluid Hamiltonian. By expanding the energy about the
ground state we find the harmonic fluid parameters (i.e. the charge, spin
velocities, etc.), explicitly. The correlation exponent and the compressibility
of are also found. As expected the general harmonic relation(i.e.
) is satisfied among the charge and spin velocities.Comment: 26 page
Exact calculation of the ground-state dynamical spin correlation function of a S=1/2 antiferromagnetic Heisenberg chain with free spinons
We calculate the exact dynamical magnetic structure factor S(Q,E) in the
ground state of a one-dimensional S=1/2 antiferromagnet with gapless free S=1/2
spinon excitations, the Haldane-Shastry model with inverse-square exchange,
which is in the same low-energy universality class as Bethe's nearest-neighbor
exchange model. Only two-spinon excited states contribute, and S(Q,E) is found
to be a very simple integral over these states.Comment: 11 pages, LaTeX, RevTeX 3.0, cond-mat/930903
Conformal Field Theory on the Fermi Surface
The Fermi surface may be usefully viewed as a collection of 1+1 dimensional
chiral conformal field theories. This approach permits straightforward
calculation of many anomalous ground state properties of the Fermi gas
including entanglement entropy and number fluctuations. The 1+1 dimensional
picture also generalizes to finite temperature and the presence of
interactions. Finally, I argue that the low energy entanglement structure of
Fermi liquid theory is universal, depending only on the geometry of the
interacting Fermi surface.Comment: 4 pages + references, 2 figure
Two quantum spin models on the checkerboard lattice with an exact two-fold degenerate Shastry-Sutherland ground state
Two quantum spin models with bilinear-biquadratic exchange interactions are
constructed on the checkerboard lattice. It is proved that, under certain
sufficient conditions on the exchange parameters, their ground states consist
of two degenerate Shastry-Sutherland singlet configurations. The constructions
are studied for arbitrary spin-S. The sufficient conditions for the existence
of ferromagnetic ground state are also found exactly. The approximate quantum
phase diagrams are presented using the exact results, together with a
variational estimate for the N\'eel antiferromagnetic phase. A two-leg spin-1/2
ladder model, based on one of the above constructions, is considered which
admits exact solution for a large number of eigenstates. The ladder model is
shown to have exact level-crossing between the rung-singlet state and the AKLT
state in the singlet ground state. Also introduced is the notion of
perpendicularity for quantum spin vectors, which appears in the discussion on
one of the two checkerboard models, and is discussed in the Appendix.Comment: Revtex, 10 pages, 6 figures, 3 table
- …
