912 research outputs found
A transient homotypic interaction model for the influenza A virus NS1 protein effector domain
Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Fin-Tail Coordination during Escape and Predatory Behavior in Larval Zebrafish
Larval zebrafish innately perform a suite of behaviors that are tightly linked to their evolutionary past, notably escape from threatening stimuli and pursuit and capture of prey. These behaviors have been carefully examined in the past, but mostly with regard to the movements of the trunk and tail of the larvae. Here, we employ kinematics analyses to describe the movements of the pectoral fins during escape and predatory behavior. In accord with previous studies, we find roles for the pectoral fins in slow swimming and immediately after striking prey. We find novel roles for the pectoral fins in long-latency, but not in short-latency C-bends. We also observe fin movements that occur during orienting J-turns and S-starts that drive high-velocity predatory strikes. Finally, we find that the use of pectoral fins following a predatory strike is scaled to the velocity of the strike, supporting a role for the fins in braking. The implications of these results for central control of coordinated movements are discussed, and we hope that these results will provide baselines for future analyses of cross-body coordination using mutants, morphants, and transgenic approaches
A general process for the development of peptide-based immunoassays for monoclonal antibodies
Monoclonal antibodies (mAb) are an important and growing class of cancer therapeutics, but pharmacokinetic analyses have in many cases been constrained by the lack of standard and robust pharmacologic assays. The goal of this project was to develop a general method for the production of immunoassays that can measure the levels of therapeutic monoclonal antibodies in biologic samples at relevant concentrations.
Alemtuzumab and rituximab are monoclonal approved for the treatment of B-cell malignancies and were used as a model system. Phage-displayed peptide libraries were screened for peptide sequences recognized by alemtuzumab (anti-CD52) or rituximab (anti-CD20). Synthetic biotinylated peptides were used in enzyme-linked immunosorbent assays (ELISA). Peptides directly synthesized on polymer resin beads were used in an immunofluorescent-based assay.
Peptide mimetope sequences were recovered for both mAb and confirmed by competitive staining and kinetic measurements. A peptide-based ELISA method was developed for each. The assay for rituximab had a limit of detection of 4 μg/ml, and the assay for alemtuzumab had a limit of detection of 1 μg/ml. Antibody-specific staining of peptide conjugated beads could be seen in a dose-dependent manner.
Phage-displayed peptide libraries can be a source of highly specific mimetopes for therapeutic mAb. The biotinylated forms of those peptides are compatible with conventional ELISA methods with sensitivities comparable to other assay methods and sufficient for pharmacological studies of those mAb given at high dose. The process outlined here can be applied to any mAb to enable improved pharmacokinetic analysis during the development and clinical use of this class of therapies
Neuromuscular training to enhance sensorimotor and functional deficits in subjects with chronic ankle instability: A systematic review and best evidence synthesis
<p>Abstract</p> <p>Objective</p> <p>To summarise the available evidence for the efficacy of neuromuscular training in enhancing sensorimotor and functional deficits in subjects with chronic ankle instability (CAI).</p> <p>Design</p> <p>Systematic review with best evidence synthesis.</p> <p>Data Sources</p> <p>An electronic search was conducted through December 2009, limited to studies published in the English language, using the Pubmed, CINAHL, Embase, and SPORTDiscus databases. Reference screening of all included articles was also undertaken.</p> <p>Methods</p> <p>Studies were selected if the design was a RCT, quasi RCT, or a CCT; the patients were adolescents or adults with confirmed CAI; and one of the treatment options consisted of a neuromuscular training programme. The primary investigator independently assessed the risk of study bias and extracted relevant data. Due to clinical heterogeneity, data was analysed using a best-evidence synthesis.</p> <p>Results</p> <p>Fourteen studies were included in the review. Meta-analysis with statistical pooling of data was not possible, as the studies were considered too heterogeneous. Instead a best evidence synthesis was undertaken. There is limited to moderate evidence to support improvements in dynamic postural stability, and patient perceived functional stability through neuromuscular training in subjects with CAI. There is limited evidence of effectiveness for neuromuscular training for improving static postural stability, active and passive joint position sense (JPS), isometric strength, muscle onset latencies, shank/rearfoot coupling, and a reduction in injury recurrence rates. There is limited evidence of no effectiveness for improvements in muscle fatigue following neuromuscular intervention.</p> <p>Conclusion</p> <p>There is limited to moderate evidence of effectiveness in favour of neuromuscular training for various measures of static and dynamic postural stability, active and passive JPS, isometric strength, muscle onset latencies, shank/rearfoot coupling and injury recurrence rates. Strong evidence of effectiveness was lacking for all outcome measures. All but one of the studies included in the review were deemed to have a high risk of bias, and most studies were lacking sufficient power. Therefore, in future we recommend conducting higher quality RCTs using appropriate outcomes to assess for the effectiveness of neuromuscular training in overcoming sensorimotor deficits in subjects with CAI.</p
Espécies de Parmotrema (Parmeliaceae, Ascomycota) do litoral centro-sul do Estado de São Paulo: II. Grupos químicos norstíctico e salazínico
Management Impacts on Forest Floor and Soil Organic Carbon in Northern Temperate Forests of the US
<p>Abstract</p> <p>Background</p> <p>The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light thinning, heavy thinning, and clearcutting) on forest floor and soil carbon pools.</p> <p>Results</p> <p>No overall trend was found between forest floor carbon stocks in stands subjected to partial or complete harvest treatments. A few sites had larger stocks in control plots, although estimates were often highly variable. Forest floor carbon pools did show a trend of increasing values from southern to northern sites. Surface soil (0-5 cm) organic carbon content and concentration were similar between treated and untreated plots. Overall soil carbon (0-20 cm) pool size was not significantly different from control values in sites treated with partial or complete harvests. No geographic trends were evident for any of the soil properties examined.</p> <p>Conclusions</p> <p>Results indicate that it is unlikely that mineral soil carbon stocks are adversely affected by typical management practices as applied in northern hardwood forests in the US; however, the findings suggest that the forest floor carbon pool may be susceptible to loss.</p
A systematic review on the effectiveness of pharmacological interventions for chronic non-specific low-back pain
The objective of this review was to determine the effectiveness of pharmacological interventions [i.e., non-steroid anti-inflammatory drugs (NSAIDs), muscle relaxants, antidepressants, and opioids] for non-specific chronic low-back pain (LBP). Existing Cochrane reviews for the four interventions were screened for studies fulfilling the inclusion criteria. Then, the literature searches were updated. Only randomized controlled trials on adults (≥18 years) with chronic (≥12 weeks) non-specific LBP and evaluation of at least one of the main clinically relevant outcome measures (pain, functional status, perceived recovery, or return to work) were included. The GRADE approach was used to determine the quality of evidence. A total of 17 randomized controlled trials was included: NSAIDs (n = 4), antidepressants (n = 5), and opioids (n = 8). No studies were found for muscle relaxants; 14 studies had a low risk of bias. The studies only reported effects on the short term (<3 months). The overall quality of the evidence was low. NSAIDs and opioids seem to lead to a somewhat higher relief in pain on the short term, as compared to placebo, in patients with non-specific chronic low back pain; opioids seem to have a small effect in improving function for a selection of patients who responded with an exacerbation of their symptoms after stopping their medication. However, both types of medication show more adverse effects than placebo. There seems to be no difference in effect between antidepressants and placebo in patients with non-specific chronic LBP
The MOBILIZE Boston Study: Design and methods of a prospective cohort study of novel risk factors for falls in an older population
<p>Abstract</p> <p>Background</p> <p>Falls are the sixth leading cause of death in elderly people in the U.S. Despite progress in understanding risk factors for falls, many suspected risk factors have not been adequately studied. Putative risk factors for falls such as pain, reductions in cerebral blood flow, somatosensory deficits, and foot disorders are poorly understood, in part because they pose measurement challenges, particularly for large observational studies.</p> <p>Methods</p> <p>The MOBILIZE Boston Study (MBS), an NIA-funded Program Project, is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. Using a door-to-door population-based recruitment, we have enrolled 765 persons aged 70 and older. The baseline assessment was conducted in 2 segments: a 3-hour home interview followed within 4 weeks by a 3-hour clinic examination. Measures included pain, cerebral hemodynamics, and foot disorders as well as established fall risk factors. For the falls follow-up, participants return fall calendar postcards to the research center at the end of each month. Reports of falls are followed-up with a telephone interview to assess circumstances and consequences of each fall. A second assessment is performed 18 months following baseline.</p> <p>Results</p> <p>Of the 2382 who met all eligibility criteria at the door, 1616 (67.8%) agreed to participate and were referred to the research center for further screening. The primary reason for ineligibility was inability to communicate in English. Results from the first 600 participants showed that participants are largely representative of seniors in the Boston area in terms of age, sex, race and Hispanic ethnicity. The average age of study participants was 77.9 years (s.d. 5.5) and nearly two-thirds were women. The study cohort was 78% white and 17% black. Many participants (39%) reported having fallen at least once in the year before baseline.</p> <p>Conclusion</p> <p>Our results demonstrate the feasibility of conducting comprehensive assessments, including rigorous physiologic measurements, in a diverse population of older adults to study non-traditional risk factors for falls and disability. The MBS will provide an important new data resource for examining novel risk factors for falls and mobility problems in the older population.</p
- …
