536 research outputs found
Erratum to: Molecular modelling study of 2-phenylethynyladenosine (PEAdo) derivatives as highly selective A3 adenosine receptor ligands
A series of 2-phenylethynyladenosine (PEAdo) derivatives substituted in the N6- and 4′position was synthesised and the new derivatives were tested at the four human adenosine receptors stably transfected into Chinese hamster ovary (CHO) cells, using radioligand binding studies (A1, A2A, A3) or adenylyl cyclase activity assay (A2B). Binding studies showed that the presence of a phenyl ethynyl group in the 2 position of adenosine favoured the interaction with A3 receptors, resulting in compounds endowed with high affinity and selectivity for the A3 subtype. Additional substitution of the N6- and 4′position increases both A3 affinity and selectivity. The results showed that the new compounds have a good affinity for the A3 receptor and in particular, the N6-methoxy-2-phenylethynyl-5′N-methylcarboxamidoadenosine, with a Ki at A3 of 1.9 nM and a selectivity A1/A3 and A2A/A3 of 4,800- and 8,600-fold, respectively. Therefore, it is one of the most potent and selective agonists at the human A3 adenosine receptor subtype reported so far. Furthermore, functional assays of inhibition of 10 μM forskolin-stimulated cAMP production via the adenosine A3 receptor revealed that the new trisubstituted adenosine derivatives behave as full agonist of this receptor subtype. Docking analysis of these compounds was performed at a homology model of the human A3 receptor based on the bovine rhodopsin crystal structure as template, and the results are in accordance with the biological data
In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis
Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis
To hit or not to hit, that is the question -genome-wide structure-based druggability predictions for <i>pseudomonas aeruginosa </i>proteins
Pseudomonas aeruginosa is a Gram-negative bacterium known to cause opportunistic infections in immune-compromised or immunosuppressed individuals that often prove fatal. New drugs to combat this organism are therefore sought after. To this end, we subjected the gene products of predicted perturbative genes to structure-based druggability predictions using DrugPred. Making this approach suitable for large-scale predictions required the introduction of new methods for calculation of descriptors, development of a workflow to identify suitable pockets in homologous proteins and establishment of criteria to obtain valid druggability predictions based on homologs. We were able to identify 29 perturbative proteins of P. aeruginosa that may contain druggable pockets, including some of them with no or no drug-like inhibitors deposited in ChEMBL. These proteins form promising novel targets for drug discovery against P. aeruginosa
Foldamers of β-peptides : conformational preference of peptides formed by rigid building blocks : The first MI-IR spectra of a triamide nanosystem
To determine local chirality driven conformational preferences of small aminocyclobutane-1-carboxylic acid derivatives, X-(ACBA) n -Y, their matrix-isolation IR spectra were recorded and analyzed. For the very first time model systems of this kind were deposited in a frozen (~10 K) noble gas matrix to reduce line width and thus, the recorded sharp vibrational lines were analyzed in details. For cis-(S,R)-1 monomer two “zigzag” conformers composed of either a six or an eight-membered H-bonded pseudo ring was identified. For trans-(S,S)-2 stereoisomer a zigzag of an eight-membered pseudo ring and a helical building unit were determined. Both findings are fully consistent with our computational results, even though the relative conformational ratios were found to vary with respect to measurements. For the dimers (S,R,S,S)-3 and (S,S,S,R)-4 as many as four different cis,trans and three different trans,cis conformers were localized in their matrix-isolation IR (MI-IR) spectra. These foldamers not only agree with the previous computational and NMR results, but also unambiguously show for the first time the presence of a structure made of a cis,trans conformer which links a “zigzag” and a helical foldamer via a bifurcated H-bond. The present work underlines the importance of MI-IR spectroscopy, applied for the first time for triamides to analyze the conformational pool of small biomolecules. We have shown that the local chirality of a β-amino acid can fully control its backbone folding preferences. Unlike proteogenic α-peptides, β- and especially (ACBA) n type oligopeptides could thus be used to rationally design and influence foldamer’s structural preferences
Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis
Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal
plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that
mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine
through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host’s immune response which
could be developed as an inexpensive and nontoxic therapeutics either alone or in combination
Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists
Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. © 2012 Koes et al
PubChem3D: a new resource for scientists
<p>Abstract</p> <p>Background</p> <p>PubChem is an open repository for small molecules and their experimental biological activity. PubChem integrates and provides search, retrieval, visualization, analysis, and programmatic access tools in an effort to maximize the utility of contributed information. There are many diverse chemical structures with similar biological efficacies against targets available in PubChem that are difficult to interrelate using traditional 2-D similarity methods. A new layer called PubChem3D is added to PubChem to assist in this analysis.</p> <p>Description</p> <p>PubChem generates a 3-D conformer model description for 92.3% of all records in the PubChem Compound database (when considering the parent compound of salts). Each of these conformer models is sampled to remove redundancy, guaranteeing a minimum (non-hydrogen atom pair-wise) RMSD between conformers. A diverse conformer ordering gives a maximal description of the conformational diversity of a molecule when only a subset of available conformers is used. A pre-computed search per compound record gives immediate access to a set of 3-D similar compounds (called "Similar Conformers") in PubChem and their respective superpositions. Systematic augmentation of PubChem resources to include a 3-D layer provides users with new capabilities to search, subset, visualize, analyze, and download data.</p> <p>A series of retrospective studies help to demonstrate important connections between chemical structures and their biological function that are not obvious using 2-D similarity but are readily apparent by 3-D similarity.</p> <p>Conclusions</p> <p>The addition of PubChem3D to the existing contents of PubChem is a considerable achievement, given the scope, scale, and the fact that the resource is publicly accessible and free. With the ability to uncover latent structure-activity relationships of chemical structures, while complementing 2-D similarity analysis approaches, PubChem3D represents a new resource for scientists to exploit when exploring the biological annotations in PubChem.</p
Fast 3D shape screening of large chemical databases through alignment-recycling
<p>Abstract</p> <p>Background</p> <p>Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes.</p> <p>Results</p> <p>Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with <it>de novo </it>alignment calculation, with better than 80% hit list overlap on average.</p> <p>Conclusion</p> <p>Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed.</p
- …
