211 research outputs found
Experimental studies of equilibrium vortex properties in a Bose-condensed gas
We characterize several equilibrium vortex effects in a rotating
Bose-Einstein condensate. Specifically we attempt precision measurements of
vortex lattice spacing and the vortex core size over a range of condensate
densities and rotation rates. These measurements are supplemented by numerical
simulations, and both experimental and numerical data are compared to theory
predictions of Sheehy and Radzihovsky [17] (cond-mat/0402637) and Baym and
Pethick [25] (cond-mat/0308325). Finally, we study the effect of the
centrifugal weakening of the trapping spring constants on the critical
temperature for quantum degeneracy and the effects of finite temperature on
vortex contrast.Comment: Fixed minor notational inconsistencies in figures. 12 pages, 8
figure
Effect of an impulsive force on vortices in a rotating Bose-Einstein condensate
The effects of a sudden increase and decrease of the interatomic interaction
and harmonic-oscillator trapping potential on vortices in a quasi
two-dimensional rotating Bose-Einstein condensate are investigated using the
mean-field Gross-Pitaevskii equation. Upon increasing the strength of
interaction suddenly the condensate enters a nonstationary oscillating phase
which starts to develop more vortices. The opposite happens if the strength is
reduced suddenly. Eventually, the number of vortices attains a final value at
large times. Similarly, the number of vortices increases (decreases) upon a
sudden reduction (augmentation) in the trapping potential. We also study the
decay of vortices when the rotation of the condensate is suddenly stopped. Upon
a free expansion of a rotating BEC with vortices the radius of the vortex core
increases more rapidly than the radius of the condensate. This makes the
counting and detection of multiple vortex easier after a free expansion.Comment: RevTeX 4, 7 pages, 7 EPS figure
Zero-Point cooling and low heating of trapped 111Cd+ ions
We report on ground state laser cooling of single 111Cd+ ions confined in
radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured
for two different trapping geometries and electrode materials, where no effort
was made to shield the electrodes from the atomic Cd source. The low measured
heating rates suggest that trapped 111Cd+ ions may be well-suited for
experiments involving quantum control of atomic motion, including applications
in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR
Nonequilibrium effects of anisotropic compression applied to vortex lattices in Bose-Einstein condensates
We have studied the dynamics of large vortex lattices in a dilute-gas
Bose-Einstein condensate. While undisturbed lattices have a regular hexagonal
structure, large-amplitude quadrupolar shape oscillations of the condensate are
shown to induce a wealth of nonequilibrium lattice dynamics. When exciting an m
= -2 mode, we observe shifting of lattice planes, changes of lattice structure,
and sheet-like structures in which individual vortices appear to have merged.
Excitation of an m = +2 mode dissolves the regular lattice, leading to randomly
arranged but still strictly parallel vortex lines.Comment: 5 pages, 6 figure
Implementation of Grover's Quantum Search Algorithm in a Scalable System
We report the implementation of Grover's quantum search algorithm in the
scalable system of trapped atomic ion quantum bits. Any one of four possible
states of a two-qubit memory is marked, and following a single query of the
search space, the marked element is successfully recovered with an average
probability of 60(2)%. This exceeds the performance of any possible classical
search algorithm, which can only succeed with a maximum average probability of
50%.Comment: 4 pages, 3 figures, updated error discussio
Dynamics of rotating Bose-Einstein condensates probed by Bragg scattering
Gaseous Bose-Einstein condensates (BECs) have become an important test bed
for studying the dynamics of quantized vortices. In this work we use two-photon
Doppler sensitive Bragg scattering to study the rotation of sodium BECs. We
analyze the microscopic flow field and present laboratory measurements of the
coarse-grained velocity profile. Unlike time-of-flight imaging, Bragg
scattering is sensitive to the direction of rotation and therefore to the phase
of the condensate. In addition, we have non-destructively probed the vortex
flow field using a sequence of two Bragg pulses.Comment: 13 pages, 5 figures. Invited paper submitted to a special issue on
"Nonlinear Waves" of the (Elsevier) journal 'Math. Comput. Simul.', for
participants in the 4th IMACS International Conference on Nonlinear Evolution
Equations and Wave Phenomena (2005). Visit our website at
http://www.physics.gatech.edu/chandra for additional informatio
Phase Control of Trapped Ion Quantum Gates
There are several known schemes for entangling trapped ion quantum bits for
large-scale quantum computation. Most are based on an interaction between the
ions and external optical fields, coupling internal qubit states of
trapped-ions to their Coulomb-coupled motion. In this paper, we examine the
sensitivity of these motional gate schemes to phase fluctuations introduced
through noisy external control fields, and suggest techniques to suppress the
resulting phase decoherence.Comment: 21 pages 12 figure
- …
