36,998 research outputs found
Comment on 'Non-equilibrium thermodynamics of light absorption'
A recent paper by Meszéna and Westerhoff (1999 J. Phys. A: Math. Gen. 32 301) has aimed to address what is referred to as a principal question of biological thermodynamics, the possibility of describing photosynthesis in terms of non-equilibrium thermodynamics. The issue is associated with a misrepresentation of the fundamental photophysics involved, and as a result the analysis is invalid
Study and development of acoustic treatment for jet engine tailpipes
A study and development program was accomplished to attenuate turbine noise generated in the JT3D turbofan engine. Analytical studies were used to design an acoustic liner for the tailpipe. Engine ground tests defined the tailpipe environmental factors and laboratory tests were used to support the analytical studies. Furnace-brazed, stainless steel, perforated sheet acoustic liners were designed, fabricated, installed, and ground tested in the tailpipe of a JT3D engine. Test results showed the turbine tones were suppressed below the level of the jet exhaust for most far field polar angles
Encounter complexes and dimensionality reduction in protein-protein association
An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition
Part of the D - dimensional Spiked harmonic oscillator spectra
The pseudoperturbative shifted - l expansion technique PSLET [5,20] is
generalized for states with arbitrary number of nodal zeros. Interdimensional
degeneracies, emerging from the isomorphism between angular momentum and
dimensionality of the central force Schrodinger equation, are used to construct
part of the D - dimensional spiked harmonic oscillator bound - states. PSLET
results are found to compare excellenly with those from direct numerical
integration and generalized variational methods [1,2].Comment: Latex file, 20 pages, to appear in J. Phys. A: Math. & Ge
d-Dimensional generalization of the point canonical transformation for a quantum particle with position-dependent mass
The d-dimensional generalization of the point canonical transformation for a
quantum particle endowed with a position-dependent mass in Schrodinger equation
is described. Illustrative examples including; the harmonic oscillator,
Coulomb, spiked harmonic, Kratzer, Morse oscillator, Poschl-Teller and Hulthen
potentials are used as reference potentials to obtain exact energy eigenvalues
and eigenfunctions for target potentials at different position-dependent mass
settings.Comment: 14 pages, no figures, to appear in J. Phys. A: Math. Ge
Topology and energy transport in networks of interacting photosynthetic complexes
We address the role of topology in the energy transport process that occurs
in networks of photosynthetic complexes. We take inspiration from light
harvesting networks present in purple bacteria and simulate an incoherent
dissipative energy transport process on more general and abstract networks,
considering both regular structures (Cayley trees and hyperbranched fractals)
and randomly-generated ones. We focus on the the two primary light harvesting
complexes of purple bacteria, i.e., the LH1 and LH2, and we use
network-theoretical centrality measures in order to select different LH1
arrangements. We show that different choices cause significant differences in
the transport efficiencies, and that for regular networks centrality measures
allow to identify arrangements that ensure transport efficiencies which are
better than those obtained with a random disposition of the complexes. The
optimal arrangements strongly depend on the dissipative nature of the dynamics
and on the topological properties of the networks considered, and depending on
the latter they are achieved by using global vs. local centrality measures. For
randomly-generated networks a random arrangement of the complexes already
provides efficient transport, and this suggests the process is strong with
respect to limited amount of control in the structure design and to the
disorder inherent in the construction of randomly-assembled structures.
Finally, we compare the networks considered with the real biological networks
and find that the latter have in general better performances, due to their
higher connectivity, but the former with optimal arrangements can mimic the
real networks' behaviour for a specific range of transport parameters. These
results show that the use of network-theoretical concepts can be crucial for
the characterization and design of efficient artificial energy transport
networks.Comment: 14 pages, 16 figures, revised versio
Spiked oscillators: exact solution
A procedure to obtain the eigenenergies and eigenfunctions of a quantum
spiked oscillator is presented. The originality of the method lies in an
adequate use of asymptotic expansions of Wronskians of algebraic solutions of
the Schroedinger equation. The procedure is applied to three familiar examples
of spiked oscillators
The Structure of Barium in the hcp Phase Under High Pressure
Recent experimental results on two hcp phases of barium under high pressure
show interesting variation of the lattice parameters. They are here interpreted
in terms of electronic structure calculation by using the LMTO method and
generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II
the dramatic drop in c/a is an instability analogous to that in the group II
metals but with the transfer of s to d electrons playing a crucial role in Ba.
Meanwhile in phase V, the instability decrease a lot due to the core repulsion
at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx,
71.15LaComment: 29 pages, 8 figure
Dislocation interactions mediated by grain boundaries
The dynamics of dislocation assemblies in deforming crystals indicate the
emergence of collective phenomena, intermittent fluctuations and strain
avalanches. In polycrystalline materials, the understanding of plastic
deformation mechanisms depends on grasping the role of grain boundaries on
dislocation motion. Here the interaction of dislocations and elastic, low angle
grain boundaries is studied in the framework of a discrete dislocation
representation. We allow grain boundaries to deform under the effect of
dislocation stress fields and compare the effect of such a perturbation to the
case of rigid grain boudaries. We are able to determine, both analytically and
numerically, corrections to dislocation stress fields acting on neighboring
grains, as mediated by grain boundary deformation. Finally, we discuss
conclusions and consequences for the avalanche statistics, as observed in
polycrystalline samples.Comment: 13 pages, 5 figure
Hemoglobin genotype has minimal influence on the physiological response of juvenile atlantic cod (Gadus morhua) to environmental challenges
Hemoglobin (Hb) polymorphism in cod is associated with temperature‐related differences in biogeographical distribution, and several authors have suggested that functional characteristics of the various hemoglobin isoforms (HbIs) directly influence phenotypic traits such as growth rate. However, no study has directly examined whether Hb genotype translates into physiological differences at the whole animal level. Thus, we generated a family of juvenile Atlantic cod consisting of all three main Hb genotypes (HbI‐1/1, HbI‐2/2, and HbI‐1/2) by crossing a single pair of heterozygous parents, and we compared their metabolic and cortisol responses to an acute thermal challenge (10°C to their critical thermal maximum [CTM] or 22°C, respectively) and tolerance of graded hypoxia. There were no differences in routine metabolism (at 10°C), maximum metabolic rate, metabolic scope, CTM (overall mean 22.9° ± 0.2°C), or resting and poststress plasma cortisol levels among Hb genotypes. Further, although the HbI‐1/1 fish grew more (by 15%–30% during the first 9 mo) when reared at 10° ± 1°C and had a slightly enhanced hypoxia tolerance at 10°C (e.g., the critical O2 levels for HbI‐1/1, HbI‐2/2, and HbI‐1/2 cod were 35.56% ± 1.24%, and 40.20% ± 1.99% air saturation, respectively), these results are contradictory to expectations based on HbI functional properties. Thus, our findings (1) do not support previous assumptions that growth rate differences among cod Hb genotypes result from a more efficient use of the oxygen supply—that is, reduced standard metabolic rates and/or increased metabolic capacity—and (2) suggest that in juvenile cod, there is no selective advantage to having a particular Hb genotype with regards to the capacity to withstand ecologically relevant environmental challenges.<br /
- …
