4,130 research outputs found
Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos
We discuss a new variant of the E6 inspired supersymmetric standard model
(E6SSM) in which the two inert singlinos are exactly massless and the dark
matter candidate has a dominant bino component. A successful relic density is
achieved via a novel mechanism in which the bino scatters inelastically into
heavier inert Higgsinos during the time of thermal freeze-out. The two massless
inert singlinos contribute to the effective number of neutrino species at the
time of Big Bang Nucleosynthesis, where the precise contribution depends on the
mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV
we find Neff \approx 3.2, where the smallness of the additional contribution is
due to entropy dilution. We study a few benchmark points in the constrained
E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE
Automated data pre-processing via meta-learning
The final publication is available at link.springer.comA data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around.
As a matter of fact, a dataset usually needs to be pre-processed. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives and nonexperienced users become overwhelmed.
We show that this problem can be addressed by an automated approach, leveraging ideas from metalearning.
Specifically, we consider a wide range of data pre-processing techniques and a set of data mining algorithms. For each data mining algorithm and selected dataset, we are able to predict the transformations that improve the result
of the algorithm on the respective dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.Peer ReviewedPostprint (published version
Constrained analytical interrelations in neutrino mixing
Hermitian squared mass matrices of charged leptons and light neutrinos in the
flavor basis are studied under general additive lowest order perturbations away
from the tribimaximal (TBM) limit in which a weak basis with mass diagonal
charged leptons is chosen. Simple analytical expressions are found for the
three measurable TBM-deviants in terms of perturbation parameters appearing in
the neutrino and charged lepton eigenstates in the flavor basis. Taking
unnatural cancellations to be absent and charged lepton perturbation parameters
to be small, interrelations are derived among masses, mixing angles and the
amount of CP-violation.Comment: To be published in the Springer Proceedings in the Physics Series
under the heading of the XXI DAE-BRNS Symposium (Guwahati, India
Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment
Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique
in bioinformatics used to infer related residues among biological sequences.
Thus alignment accuracy is crucial to a vast range of analyses, often in ways
difficult to assess in those analyses. To compare the performance of different
aligners and help detect systematic errors in alignments, a number of
benchmarking strategies have been pursued. Here we present an overview of the
main strategies--based on simulation, consistency, protein structure, and
phylogeny--and discuss their different advantages and associated risks. We
outline a set of desirable characteristics for effective benchmarking, and
evaluate each strategy in light of them. We conclude that there is currently no
universally applicable means of benchmarking MSA, and that developers and users
of alignment tools should base their choice of benchmark depending on the
context of application--with a keen awareness of the assumptions underlying
each benchmarking strategy.Comment: Revie
A realistic pattern of fermion masses from a five-dimensional SO(10) model
We provide a unified description of fermion masses and mixing angles in the
framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa
couplings of order unity. The space-time is five dimensional and the extra flat
spatial dimension is compactified on the orbifold ,
leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions
are localised. The gauge symmetry breaking is completed by means of a rather
economic scalar sector, avoiding the doublet-triplet splitting problem. The
matter fields live in the bulk and their massless modes get exponential
profiles, which naturally explain the mass hierarchy of the different fermion
generations. Quarks and leptons properties are naturally reproduced by a
mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of
bulk masses in terms of a single parameter. The model provides a realistic
pattern of fermion masses and mixing angles for large values of . It
favours normally ordered neutrino mass spectrum with the lightest neutrino mass
below 0.01 eV and no preference for leptonic CP violating phases. The right
handed neutrino mass spectrum is very hierarchical and does not allow for
thermal leptogenesis. We analyse several variants of the basic framework and
find that the results concerning the fermion spectrum are remarkably stable.Comment: 30 pages, 7 figures, 4 table
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Lepton flavour violation in the MSSM
We derive new constraints on the quantities delta_{XY}^{ij}, X,Y=L,R, which
parametrise the flavour-off-diagonal terms of the charged slepton mass matrix
in the MSSM. Considering mass and anomalous magnetic moment of the electron we
obtain the bound |delta^{13}_{LL} delta^{13}_{RR}|<0.1 for tan beta=50, which
involves the poorly constrained element delta^{13}_{RR}. We improve the
predictions for the decays tau -> mu gamma, tau -> e gamma and mu -> e gamma by
including two-loop corrections which are enhanced if tan beta is large. The
finite renormalisation of the PMNS matrix from soft SUSY-breaking terms is
derived and applied to the charged-Higgs-lepton vertex. We find that the
experimental bound on BR(tau -> e gamma) severely limits the size of the MSSM
loop correction to the PMNS element U_{e3}, which is important for the proper
interpretation of a future U_{e3} measurement. Subsequently we confront our new
values for delta^{ij}_{LL} with a GUT analysis. Further, we include the effects
of dimension-5 Yukawa terms, which are needed to fix the Yukawa unification of
the first two generations. If universal supersymmetry breaking occurs above the
GUT scale, we find the flavour structure of the dimension-5 Yukawa couplings
tightly constrained by mu -> e gamma.Comment: 37 pages, 15 figures; typo in Equation (35) and (49) correcte
Large CP Violation in B_s Meson Mixing with EDM constraint in Supersymmetry
Motivated by the recent measurement of the like-sign dimuon charge asymmetry,
we investigate anomalous CP violation in the B_s- bar{B}_s mixing within the
supersymmetry. We show that when gluino diagrams dominate supersymmetry
contributions, it is very difficult to realize a large B_s- bar{B}_s mixing
phase under the constraint from electric dipole moments barring cancellations.
This constraint can be ameliorated by supposing superparticles decoupled. In
this limit, we find that it is possible to achieve the large CP asymmetry, and
the branching ratio of B_s -> mu^+ mu^- tends to become sizable.Comment: 20 pages, 5 figure
Spontaneous R-Parity Violation, Flavor Symmetry and Tribimaximal Mixing
We explore the possibility of spontaneous R parity violation in the context
of flavor symmetry. Our model contains singlet matter chiral superfields which are arranged as triplet of
and as well as few additional Higgs chiral superfields which are singlet
under MSSM gauge group and belong to triplet and singlet representation under
the flavor symmetry. R parity is broken spontaneously by the vacuum
expectation values of the different sneutrino fields and hence we have
neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in
our model, in addition to the standard model neutrino- gauge singlet neutrino,
gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we
have an extended neutral fermion mass matrix. We explore the low energy
neutrino mass matrix for our model and point out that with some specific
constraints between the sneutrino vacuum expectation values as well as the MSSM
gauge singlet Higgs vacuum expectation values, the low energy neutrino mass
matrix will lead to a tribimaximal mixing matrix. We also analyze the potential
minimization for our model and show that one can realize a higher vacuum
expectation value of the singlet
sneutrino fields even when the other sneutrino vacuum expectation values are
extremely small or even zero.Comment: 18 page
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
- …
