212 research outputs found
Structure of a new dense amorphous ice
The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing "interstitial," the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled
Absence of molecular mobility on nano-second time scales in amorphous ice phases
High-resolution neutron backscattering techniques are exploited to study the
elastic and quasi-elastic response of the high-density amorphous (HDA), the
low-density amorphous (LDA) and the crystalline ice Ic upon temperature
changes. Within the temperature ranges of their structural stability (HDA at T
> 80 K, LDA at T > 135 K, ice Ic at T < 200 K) the Debye-Waller factors and
mean-square displacements characterise all states as harmonic solids. During
the transformations HDA->LDA (T ~ 100 K), LDA->Ic (T ~ 150K) and the supposed
glass transition with Tg ~ 135 K no relaxation processes can be detected on a
time scale t < 4 ns. It can be concluded from coherent scattering measurements
(D_2O) that LDA starts to recrystallise into ice Ic at T ~ 135 K, i.e. at the
supposed Tg. In the framework of the Debye model of harmonic solids HDA reveals
the highest Debye temperature among the studied ice phases, which is in full
agreement with the lowest Debye level in the generalised density of states
derived from time-of-flight neutron scattering experiments. The elastic results
at low T indicate the presence of an excess of modes in HDA, which do not obey
the Bose statistics
The Glass Transition Temperature of Water: A Simulation Study
We report a computer simulation study of the glass transition for water. To
mimic the difference between standard and hyperquenched glass, we generate
glassy configurations with different cooling rates and calculate the
dependence of the specific heat on heating. The absence of crystallization
phenomena allows us, for properly annealed samples, to detect in the specific
heat the simultaneous presence of a weak pre-peak (``shadow transition''), and
an intense glass transition peak at higher temperature.
We discuss the implications for the currently debated value of the glass
transition temperature of water. We also compare our simulation results with
the Tool-Narayanaswamy-Moynihan phenomenological model.Comment: submitted to Phys. Re
Collisions of small ice particles under microgravity conditions - II. Does the chemical composition of the ice change the collisional properties?
Context. Understanding the collisional properties of ice is important for understanding both the early stages of planet formation and the evolution of planetary ring systems. Simple chemicals such as methanol and formic acid are known to be present in cold protostellar regions alongside the dominant water ice; they are also likely to be incorporated into planets which form in protoplanetary disks, and planetary ring systems. However, the effect of the chemical composition of the ice on its collisional properties has not yet been studied.Aims. Collisions of 1.5 cm ice spheres composed of pure crystalline water ice, water with 5% methanol, and water with 5% formic acid were investigated to determine the effect of the ice composition on the collisional outcomes.Methods. The collisions were conducted in a dedicated experimental instrument, operated under microgravity conditions, at relative particle impact velocities between 0.01 and 0.19 ms-1, temperatures between 131 and 160 K and a pressure of around 10-5Results. A range of coefficients of restitution were found, with no correlation between this and the chemical composition, relative impact velocity, or temperature.Conclusions. We conclude that the chemical composition of the ice (at the level of 95% water ice and 5% methanol or formic acid) does not affect the collisional properties at these temperatures and pressures due to the inability of surface wetting to take place. At a level of 5% methanol or formic acid, the structure is likely to be dominated by crystalline water ice, leading to no change in collisional properties. The surface roughness of the particles is the dominant factor in explaining the range of coefficients of restitution
Interplay Between Time-Temperature-Transformation and the Liquid-Liquid Phase Transition in Water
We study the TIP5P water model proposed by Mahoney and Jorgensen, which is
closer to real water than previously-proposed classical pairwise additive
potentials. We simulate the model in a wide range of deeply supercooled states
and find (i) the existence of a non-monotonic ``nose-shaped'' temperature of
maximum density line and a non-reentrant spinodal, (ii) the presence of a low
temperature phase transition, (iii) the free evolution of bulk water to ice,
and (iv) the time-temperature-transformation curves at different densities.Comment: RevTeX4, 4 pages, 4 eps figure
Partitioning of crystalline and amorphous phases during freezing of simulated Enceladus ocean fluids
This work was supported by The Leverhulme Trust (grant number RPG‐2016‐153).Saturn's ice‐covered moon Enceladus may contain the requisite conditions for life. Its potentially habitable subsurface ocean is vented into space as large cryovolcanic plumes that can be sampled by spacecraft, acting as a window to the ocean below. However, little is known about how Enceladus’ ocean fluids evolve as they freeze. Using cryo‐imaging techniques, we investigated solid phases produced by freezing simulated Enceladean ocean fluids at endmember cooling rates. Our results show that under flash‐freezing conditions (>10 K s−1), Enceladus‐relevant fluids undergo segregation, whereby the precipitation of ice templates the formation of brine vein networks. The high solute concentrations and confined nature of these brine veins means that salt crystallization is kinetically inhibited and glass formation (vitrification) can occur at lower cooling rates than typically required for vitrification of a bulk solution. Crystalline salts also form if flash‐frozen fluids are re‐warmed. The 10 µm‐scale distribution of salt phases produced by this mechanism differs markedly from that of gradually cooled (∼1 K min−1) fluids, showing that they inherit a textural signature of their formation conditions. The mineralogy of cryogenic carbonates can be used as a probe for cooling rate and parent fluid pH. Our findings reveal possible endmember routes for solid phase production from Enceladus’ ocean fluids and mechanisms for generating compositional heterogeneity within ice particles on a sub‐10 µm scale. This has implications for understanding how Enceladus' ocean constituents are incorporated into icy particles and delivered to space.Publisher PDFPeer reviewe
Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability
Carbonaceous chondrite meteorites are the most compositionally primitive rocks in the solar system, but the most chemically pristine (CI1 and CM2 chondrites) have experienced pervasive aqueous alteration, apparently within asteroid parent bodies. Unfractionated soluble elements suggest very limited flow of liquid water, indicting a closed-system at scales large than 100's μm, consistent with data from oxygen isotopes, and meteorite petrography. However, numerical studies persistently predict large-scale (10's km) water transport in model asteroids, either in convecting cells, or via ‘exhalation’ flow — an open-system at scales up to 10's km. These models have tended to use permeabilites in the range 10− 13 to 10− 11 m2. We show that the permeability of plausible chondritic starting materials lies in the range 10− 19 to 10− 17 m2 (0.1–10 μD): around six orders-of-magnitude lower than previously assumed. This low permeability is largely a result of the extreme fine grain-size of primitive chondritic materials. Applying these permeability estimates in numerical models, we predict very limited liquid water flow (distances of 100's µm at most), even in a high porosity, water-saturated asteroid, with a high thermal gradient, over millions of years. Isochemical alteration, with flow over minimal lengthscales, is not a special circumstance. It is inevitable, once we consider the fundamental material properties of these rocks. To achieve large-scale flow it would require average matrix grain sizes in primitive materials of 10's–100's μm — orders of magnitude larger than observed. Finally, in addition to reconciling numerical modelling with meteorite data, our work explains several other features of these enigmatic rocks, most particularly, why the most chemically primitive meteorites are also the most altered
Characterizing the secondary hydration shell on hydrated myoglobin, hemoglobin, and lysozyme powders by its vitrification behavior on cooling and its calorimetric glass-->liquid transition and crystallization behavior on reheating
- …
