28 research outputs found
Aquatic food security:insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment
Fisheries and aquaculture production, imports, exports and equitability of distribution determine the supply of aquatic food to people. Aquatic food security is achieved when a food supply is sufficient, safe, sustainable, shockproof and sound: sufficient, to meet needs and preferences of people; safe, to provide nutritional benefit while posing minimal health risks; sustainable, to provide food now and for future generations; shock-proof, to provide resilience to shocks in production systems and supply chains; and sound, to meet legal and ethical standards for welfare of animals, people and environment. Here, we present an integrated assessment of these elements of the aquatic food system in the United Kingdom, a system linked to dynamic global networks of producers, processors and markets. Our assessment addresses sufficiency of supply from aquaculture, fisheries and trade; safety of supply given biological, chemical and radiation hazards; social, economic and environmental sustainability of production systems and supply chains; system resilience to social, economic and environmental shocks; welfare of fish, people and environment; and the authenticity of food. Conventionally, these aspects of the food system are not assessed collectively, so information supporting our assessment is widely dispersed. Our assessment reveals trade-offs and challenges in the food system that are easily overlooked in sectoral analyses of fisheries, aquaculture, health, medicine, human and fish welfare, safety and environment. We highlight potential benefits of an integrated, systematic and ongoing process to assess security of the aquatic food system and to predict impacts of social, economic and environmental change on food supply and demand
Harmful algal blooms and climate change: exploring future distribution changes
Harmful algae can cause death in fish, shellfish, marine mammals, and humans, via their toxins or from effects associated with their sheer quantity. There are many species, which cause a variety of problems around north-west Europe, and the frequency and distribution of algal blooms have altered in the recent past. Species distribution modelling was used to understand how harmful algal species may respond in the future to climate change, by considering environmental preferences and how these may shift. Most distribution studies to date use low resolution global model outputs. In this study, high resolution, downscaled shelf seas climate projections for the north-west European shelf were nested within lower resolution global projections, to understand how the distribution of harmful algae may change by the mid to end of century. Projections suggest that the habitat of most species (defined by temperature, salinity, depth, and stratification) will shift north this century, with suitability increasing in the central and northern North Sea. An increase in occurrence here might lead to more frequent detrimental blooms if wind, irradiance and nutrient levels are also suitable. Prioritizing monitoring of species in these susceptible areas could help in establishing early-warning systems for aquaculture and health protection schemes
Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy)
Development of semi-quantitative pcr assays for the detection and enumeration of gambierdiscus species (gonyaulacales, dinophyceae)
10.1111/j.1529-8817.2012.01146.xJournal of Phycology484902-915JPYL
