1,120 research outputs found

    Spin-Transfer Torques in Helimagnets

    Full text link
    We theoretically investigate current-induced magnetization dynamics in chiral-lattice helimagnets. Spin-orbit coupling in non-centrosymmetric crystals induces a reactive spin-transfer torque that has not been previously considered. We demonstrate how the torque is governed by the crystal symmetry and acts as an effective magnetic field along the current direction in cubic B20-type crystals. The effects of the new torque are computed for current-induced dynamics of spin-spirals and the Doppler shift of spin waves. In current-induced spin-spiral motion, the new torque tilts the spiral structure. The spin waves of the spiral structure are initially displaced by the new torque, while the dispersion relation is unaffected.Comment: Final version accepted by Physical Review

    Phenomenology of Current-Induced Spin-Orbit Torques

    Full text link
    Currents induce magnetization torques via spin-transfer when the spin angular momentum is conserved or via relativistic spin-orbit coupling. Beyond simple models, the relationship between material properties and spin-orbit torques is not known. Here, we present a novel phenomenology of current-induced torques that is valid for any strength of intrinsic spin-orbit coupling. In PtCoAlOx\rm Pt|Co|AlO_x, we demonstrate that the domain walls move in response to a novel relativistic dissipative torque that is dependent on the domain wall structure and that can be controlled via the Dzyaloshinskii-Moriya interaction. Unlike the non-relativistic spin-transfer torque, the new torque can, together with the spin-Hall effect in the Pt-layer, move domain walls by means of electric currents parallel to the walls.Comment: Final version accepted by Physical Review

    Twists in Ferromagnetic Monolayers With Trigonal Prismatic Symmetry

    Full text link
    Two-dimensional materials such as graphene or hexagonal boron nitride are indispensable in industry. The recently discovered 2D ferromagnetic materials also promise to be vital for applications. In this work, we develop a phenomenological description of non-centrosymmetric 2D ferromagnets with trigonal prismatic crystal structure. We chose to study this special symmetry group since these materials do break inversion symmetry and therefore, in principle, allow for chiral spin structures such as magnetic helices and skyrmions. However, unlike all non-centrosymmetric magnets known so far, we show that the symmetry of magnetic trigonal prismatic monolayers neither allow for an internal relativistic Dzyaloshinskii-Moriya interaction (DMI) nor a reactive spin-orbit torque. We demonstrate that the DMI only becomes important at the boundaries, where it modifies the boundary conditions of the magnetization and leads to a helical equilibrium state with a helical wavevector that is inherently linked to the internal spin orientation. Furthermore, we find that the helical wavevector can be electrically manipulated via dissipative spin-torque mechanisms. Our results reveal that 2D magnets offer a large potential for unexplored magnetic effects.Comment: 5 pages, 3 figure

    Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry

    Full text link
    A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with CvC_{\infty v} symmetry and explore the consequences of the DMI. Interestingly, we find that the DMI already in the simplest case of a ferromagnetic thin-film leads to a purely boundary-driven magnetic twist state at the edges of the sample. The twist state represents a new type of DMI-induced spin structure, which is completely independent of the internal DMI field. We estimate the size of the texture-induced magnetoresistance effect being in the range of that of domain walls.Comment: 7 pages, 1 figure; added references, added updated affiliatio

    Spin-Motive Forces and Current-Induced Torques in Ferromagnets

    Full text link
    In metallic ferromagnets, the spin-transfer torque and spin-motive force are known to exhibit a reciprocal relationship. Recent experiments on ferromagnets with strong spin-orbit coupling have revealed a rich complexity in the interaction between itinerant charge carriers and magnetization, but a full understanding of this coupled dynamics is lacking. Here, we develop a general phenomenology of the two reciprocal processes of charge pumping by spin-motive forces and current-driven magnetization dynamics. The formalism is valid for spin-orbit coupling of any strength and presents a systematic scheme for deriving all possible torque and charge-pumping terms that obey the symmetry requirements imposed by the point group of the system. We demonstrate how the different charge pumping and torque contributions are connected via the Onsager reciprocal relations. The formalism is applied to two important classes of systems: isotropic ferromagnets with non-uniform magnetization and homogeneous ferromagnets described by the point group C2vC_{2v}.Comment: Final version accepted by Physical Review

    Effective Magnetic Monopoles and Universal Conductance Fluctuations

    Full text link
    The observation of isolated positive and negative charges, but not isolated magnetic north and south poles, is an old puzzle. Instead, evidence of effective magnetic monopoles has been found in the abstract momentum space. Apart from Hall-related effects, few observable consequences of these abstract monopoles are known. Here, we show that it is possible to manipulate the monopoles by external magnetic fields and probe them by universal conductance fluctuation (UCF) measurements in ferromagnets with strong spin-orbit coupling. The observed fluctuations are not noise, but reproducible quasiperiodic oscillations as a function of magnetisation direction, a novel Berry phase fingerprint of the magnetic monopoles.Comment: Final version accepted by Physical Review Letter

    Nonlocal Damping of Helimagnets in One-Dimensional Interacting Electron Systems

    Full text link
    We investigate the magnetization relaxation of a one-dimensional helimagnetic system coupled to interacting itinerant electrons. The relaxation is assumed to result from the emission of plasmons, the elementary excitations of the one-dimensional interacting electron system, caused by slow changes of the magnetization profile. This dissipation mechanism leads to a highly nonlocal form of magnetization damping that is strongly dependent on the electron-electron interaction. Forward scattering processes lead to a spatially constant damping kernel, while backscattering processes produce a spatially oscillating contribution. Due to the nonlocal damping, the thermal fluctuations become spatially correlated over the entire system. We estimate the characteristic magnetization relaxation times for magnetic quantum wires and nuclear helimagnets.Comment: Final version accepted by Physical Review

    Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures

    Full text link
    We investigate the formation of a new type of composite topological excitation -- the skyrmion-vortex pair (SVP) -- in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed, and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.Comment: Final version accepted by Physical Review Letters; 9 pages, 5 figure
    corecore